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Discrete computational shear strength
models for 5-, 6-, and 11-circular-hoop
and spiral transverse reinforcement

Yu-Chen Ou1 and Si-Huy Ngo2

Abstract
Based on the actual, discrete locations of interception points between the critical shear crack and transverse reinforcement, this study
developed the discrete computational shear strength models for 5-, 6-, and 11-circular-hoop and spiral reinforcement. Moreover, con-
ventional simplified calculation method was revised for use for 5-, 6-, and 11-circular-hoop and spiral reinforcement. Examination of
the difference between the discrete computational shear strength models and simplified calculation shows that the error of the simpli-
fied calculation increases with increasing ratios of spacing to diameter of circular hoops or spirals. Limiting values of spacing to dia-
meter ratios were proposed to control the error of the simplification calculation to be equal to or less than 10%. Plots of
modification factors were proposed to be used with the simplification calculation when the spacing to diameter ratio is large.
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Introduction

It has long been recognized that columns reinforced
with spiral transverse reinforcement have superior
strength and ductility to those with rectilinear tie
transverse reinforcement. Spiral columns showed
excellent performance under extreme loading condi-
tions such as earthquakes (e.g. Olive View Hospital in
the 1971 San Fernando Earthquake (Murphy 1973))
and impact and blast loading (e.g. aircraft impact into
the Pentagon building (Mlakar et al. 2005)). Due to
the superior performance of spiral reinforcement,
researchers and engineers have been conceiving meth-
ods to apply spiral reinforcement even in non-circular
column cross sections. The first successful example is
the two-spiral reinforcement scheme for oblong col-
umns (Figure 1(a)). Results of experimental studies
(Correal et al. 2004, 2007; Kawashima 2004; McLean
and Buckingham 1994; Otaki and Kuroiwa 1999;
Shito et al. 2002; Tanaka and Park 1993) showed that
even with much less amounts of transverse reinforce-
ment, two-spiral columns showed better strength and
ductility than conventional tied columns. Recently,
seven-spiral reinforcement (Figure 1(b)) was proposed
for oblong columns to reduce the size of spirals to
relieve difficulty in spiral fabrication when columns
are large. Results of shear and flexural tests (Ou et al.
2014, 2015) showed that seven-spiral columns even

with lower amounts of transverse reinforcement had
superior shear and flexural capacities to conventional
tied columns.

In addition to oblong columns, spiral reinforcement
has been extended to square and rectangular columns.
Examples include five-spiral (Figure 2(a); Yin et al.
2011, 2012) and six-spiral reinforcement (Figure 2(b);
Wu et al. 2013) for square and rectangular columns,
respectively. Experimental results showed five-spiral
and six-spiral columns, even with less amounts of
transverse reinforcement exhibited better seismic per-
formance in terms of strength, ductility, and energy
dissipation compared with conventional tied columns.
Yin et al. (2011) carried out a cost evaluation of an
11-story apartment project and found that the cost of
confinement reinforcement was reduced by 41% when
five-spiral reinforcement was used to replace conven-
tional tie reinforcement. Similar to the motivation of
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seven-spiral reinforcement for oblong columns, that is,
reducing the size of spirals, eleven-spiral reinforcement
(Ou et al. 2015) was developed by combining seven-
spiral reinforcement and four smaller spirals at the
corners (Figure 2(c)). Test results showed that an 11-
spiral column with an amount of transverse reinforce-
ment 75% of that of a comparable tied column exhib-
ited better strength, ductility, and energy dissipation
than the tied column.

In the shear strength design of multi-circular-hoop
or multi-spiral columns, equation (1) (Caltrans, 2010
and American Association of State Highway and
Transportation Officials (AASHTO), 2011) is often
used to calculate shear strength provided by transverse
reinforcement

Vs =
AvfytD

s
, where Av = n

p

2

� �
Ab ð1Þ

where Vs is the shear strength provided by transverse
reinforcement, Av the total area of transverse reinfor-
cement within spacing s, Ab the cross-sectional area of
a transverse reinforcing bar, fyt the yield strength of
transverse reinforcement, D the diameter of a circular
hoop or spiral, s the spacing of transverse reinforce-
ment, and n is the number of individual circular hoop
sets or spirals. A hoop set refers to all the layers of
hoops with their centers on the same axis parallel with
the column longitudinal axis. Equation (1) is based on
the studies by Ang et al. (1989) and Tanaka and Park
(1993) and can be derived as follows: first, based on
equilibrium and assuming transverse reinforcement
yields at the ultimate condition, the shear resistance of
multi-circular-hoop or multi-spiral reinforcement can
be discretely computed by the following equation
(Figure 3)

Vs =
X

j

Abjfytj sin bj

X
i

sin ai ð2Þ

where index j refers to the jth hoop set or spiral, index
i refers to the ith intersection point within the jth hoop
set or spiral, bj is the inclination angle for the jth hoop
set or spiral, and ai is the angle for the ith intersection
point (Figure 3). To simplify the discrete computation,

it is assumed that the vertical spacing of a circular
hoop set or a spiral (s) is very small. Therefore,
sin bj ’ 1 in the spiral case. Note that sin bj = 1 in
the circular hoop case regardless of s. Because s is very
small, the reinforcement is intersected by a shear crack
at a sufficient number of points so that

P
i sin ai from

ai = 0 to p can be approximated by the summation of
the average value of sin ai from ai = 0 to p, that is,P

i p=4. Moreover, the number of the intersection
points for each circular hoop set or spiral is approxi-
mated by 2D cot u=s, where u is the angle between the
crack and longitudinal axis of the column. Hence, n
circular hoop sets or spirals have 2nD cot u=s intercep-
tion points. Finally, it is assumed that the crack angle
(u) is 45� and all the hoop sets or spirals have the same
bar size (Ab) and yield strength (fyt). The above
assumptions simplify equation (2) to equation (1) as
follows

Vs =
X

j

Abjfytj sin bj

X
i

sin ai

=Abfyt

X
j

X
i

sin ai ’ Abfyt nð Þ 2D

s

� �
p

4

� � ð3Þ

Figure 1. (a) Two-spiral reinforcement and (b) seven-spiral
reinforcement.

Figure 2. (a) A 5-spiral reinforcement, (b) 6-spiral
reinforcement, and (c) 11-spiral reinforcement.

Figure 3. (a) A six-circular-hoop column and (b) a six-spiral
column.
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The objective of this research is to develop the
mathematical formulations of equation (2) without the
small spacing-related assumptions for 5-, 6-, and 11-cir-
cular-hoop and spiral reinforcement (Figure 2) and use
them to propose modifications to equation (1) for use
in 5-, 6-, and 11-circular-hoop and spiral reinforcement.

Discrete computational shear strength

In this section, the mathematical formulations of equa-
tion (2), referred to as discrete computational shear
strength (DCSS) models, are derived first for 5-circu-
lar-hoop and 5-spiral reinforcement and then extended
to 6- and 11-circular-hoop and spiral reinforcement. In
the derivation of the DCSS models, the small spacing-
related assumptions used in equation (1), which
include sin bj = 1 for spiral reinforcement,P

i sin ai =
P

i p=4, and the number of intersection
points = 2D cot u/s, are removed.

Five-circular-hoop and five-spiral reinforcement

Five-circular-hoop reinforcement. To facilitate the deriva-
tion of the DCSS model, a coordinate system is estab-
lished as shown in Figure 4 to provide systematic
location definition of interception points between the

shear crack and transverse reinforcement. The hori-
zontal axis (X axis) of the coordinate system is set to
pass through a hoop layer. The shear crack is set to
pass through the origin of the coordinate system
(Figure 4(a)). Five-circular-hoop reinforcement is
formed by four corner hoop sets and one central hoop
set. In this subsection, a general DCSS model is
derived first for a corner hoop set with the left edge a
distance l from the origin of the coordinate system.
Similarly, a general DCSS model is derived for a cen-
tral hoop set with the left edge a distance l from the
origin of the coordinate system. The DCSS model for
the entire five-circular-hoop reinforcement is then for-
mulated based on these two general DCSS models.

The right corner hoop set (with thicker lines) in
Figure 4(a) is used to illustrate the derivation of the
general DCSS model for a corner hoop set. As can be
seen from the figure, the line function of the ith layer
of the hoop set is y= i � s. The line function of the
shear crack is y= x cot u. The interception point
between the crack and the ith layer of the hoop set can
be determined by solving the following simultaneous
equations

y= x cot u

y= i � s

�
, xi = is tan u ð4Þ

Figure 4. Discrete computational methods for shear strengths of (a) five-circular-hoop reinforcement and (b) five-spiral
reinforcement.
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The horizontal coordinate xi of the interception
point has to satisfy the following condition (from the
left edge to the right edge of the hoop)

l� xi� l+DC ð5Þ

where DC is the diameter of a corner hoop. Combining
equations (4) and (5), the range for i can be obtained as
follows

l cot u

s
� i� l cot u

s
+

DC

s
cot u ð6Þ

where NDC
=(DC=s) cot u and Nl =(l=s) cot u. Note

that i should be an integer. Equation (6) becomes

int Nl½ �+ 1� i� int Nl +NDC
½ � ð7Þ

With trigonometry and equation (4), sin ai of equa-
tion (2) can be expressed as

sin ai =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos2 ai

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� xi � l � 0:5DC

0:5DC

� �2
s

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:5NDC

+Nl � i

0:5NDC

� �2
s

ð8Þ

Substituting equations (7) and (8) in equation (2)
and noting that a hoop is intercepted at two points
gives the general DCSS model for a corner hoop set

V l
C = 2AbCfytC

X
i

sin ai = 2AbCfytC

Xint NDC
+Nl½ �

i=int Nl½ �+ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:5NDC

+Nl � i

0:5NDC

� �2
s ð9Þ

where superscript l denotes that the horizontal distance
from the edge of the hoop set to the origin of the
coordinate system is l, subscript C denotes a corner
hoop set, AbC is the cross-sectional area of a corner
hoop bar, and fytC is the yield strength of a corner
hoop bar.

The general DCSS model for a central hoop set with
the left edge a distance l from the origin of the coordi-
nate system, V l

L, can be derived by equations (4) to (8)
with DL substituted for DC, where DL is the diameter of
a central hoop. Note that a larger cross-sectional dia-
meter is often used for a central hoop because a central
hoop covers a larger area than a corner hoop

V l
L = 2AbLfytL

X
i

sin ai = 2AbLfytL

Xint NDL
+Nl½ �

i=int Nl½ �+ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:5NDL

+Nl � i

0:5NDL

� �2
s ð10Þ

where subscript L denotes a central (large) hoop set;
NDL

=(DL=s) cot u, AbL is the cross-sectional area of a
central hoop bar, and fytL is the yield strength of a cen-
tral hoop bar.

To derive the DCSS model for five-circular-hoop
reinforcement, the critical shear crack needs to be set
first. The critical shear crack is the one that results in
the smallest shear strength and typically intercepts the
edge of one or more hoop sets (as indicated by Kim
and Mander 2005) because shear strength provided by
interception at the edge equals to zero
( sin ai = sin 08= 0). In the case of five-circular-hoop
reinforcement, the critical crack intercepts the edges of
three circular hoops as shown in Figure 4(a). Based on
the critical shear crack condition, five-circular-hoop
reinforcement consists of two corner hoop sets with
l= 0, two corner hoop sets with l=DL � DC , and one
central hoop set with l = 0. For the two corner hoop
sets with l= 0, the DCSS model for each set, V 0

C, is
equation (9) with l = 0

V 0
C = 2AbCfytC

X
i

sin ai = 2AbCfytC

Xint NDC½ �

i= 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:5NDC

� i

0:5NDC

� �2
s ð11Þ

For the two corner hoop sets with l =DL � DC, the
DCSS model for each set, V

DL�DC

C , is equation (9) with
l=DL � DC

V
DL�DC

C = 2AbCfytC

X
i

sin ai = 2AbCfytC

Xint NDC
+NDL�DC½ �

i=int NDL�DC½ �+ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:5NDC

+NDL�DC
� i

0:5NDC

� �2
s ð12Þ

where NDL�DC
=(DL � DC=s) cot u. For the central

hoop set with l = 0, the DCSS model, V 0
L , is equation

(10) with l = 0

V 0
L = 2AbLfytL

X
i

sin ai = 2AbLfytL

Xint NDL½ �

i= 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:5NDL

� i

0:5NDL

� �2
s ð13Þ

The DCSS model for the entire five-circular-hoop
reinforcement is

Vs = 2V 0
C + 2V

DL�DC

C +V 0
L ð14Þ

Five-spiral reinforcement. Similar to the derivation in the
previous subsection, a coordinate system is set so that
the horizontal axis (X axis) passes through the left edge
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of a spiral. The shear crack is set to pass through the
origin of the coordinate system (Figure 4(b)). Five-
spiral reinforcement is formed by four corner spirals
and one central spiral. In this subsection, the general
DCSS model for a corner spiral and that for a central
spiral with their edges a distance l to the origin of the
coordinate system are derived first and then applied to
derive the DCSS model for the entire five-spiral rein-
forcement. The right corner spiral in Figure 4(b) (with
thicker lines) is used to illustrate the derivation of the
general DCSS model for a corner spiral. To facilitate
the derivation, the spiral is divided into the back side
part (dash lines) and the front side part (solid lines).
The line function of the dash line at the ith level is

y=
s

2DC

x+ s i� l

2DC

� �
ð15Þ

where DC is the diameter of a corner spiral. The line
function of the solid line at the ith level is

y= � s

2DC

x+ s i+ 1+
l

2DC

� �
ð16Þ

The line function of the crack is y= x cot u. The x
coordinate of the intersection between the crack and
the ith level of the back side spiral (x1

i ) can be deter-
mined by solving the simultaneous equations of the
crack line and back side spiral lines

x1
i =

s i� l
2DC

� �
cot u� s

2DC

=
s i� blCð Þ

c1C

from
y= x cot u

y= s
2DC

x+ s i� l
2DC

� �( ð17Þ

where blC =(l=2DC) and c1C = cot u� (s=2DC). The x
coordinate of the intersection point has the following
range (from the left to the right edge of the spiral)

l� x1
i �DC + l ð18Þ

Substituting equation (17) for x1
i in equation (18)

and solving for the range of i gives

l cot u

s
� i� DC cot u

s
+

l cot u

s
� 0:5 ð19Þ

Note again that the i value should be integer

int Nl½ �+ 1� i� int NDC
+Nl � 0:5½ � ð20Þ

With trigonometry and equation (17), sin a1
i can be

expressed as

sin a1
i =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos2 a1

i

q
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l+ 0:5DC � x1

i

0:5DC

� �2
s

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

0:5NDC
+Nl � i�blC

c1C
cot u

0:5NDC

 !2
vuut ð21Þ

Similarly, the x coordinate of the intersection
between the crack and the ith level of the front side
spiral is

x2
i =

s i+ 1+ l
2DC

� �
cot u+ s

2DC

=
s i+ 1+ blCð Þ

c2C

from
y= x cot u

y= � s
2DC

x+ s i+ 1+ l
2DC

� �( ð22Þ

where c2C = cot u+(s=2DC). The x coordinate of the
intersection point has the following range

l cot u

s
� 1� i� DC cot u

s
+

l cot u

s
� 0:5 ð23Þ

or

int Nl½ � � i� int NDC
+Nl � 0:5½ � ð24Þ

sin a2
i can be expressed as

sin a2
i =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

0:5NDC
+Nl � i+ 1+ blC

c2C
cot u

0:5NDC

 !2
vuut

ð25Þ

Substituting equations (20), (21), (24), and (25) in
equation (2) gives the general DCSS model for a cor-
ner spiral

V l
C =AbCfytC sin bC

X
sin a1

i + sin a2
i

� 	
=AbCfytC sin bC

Pint NDC
+Nl�0:5½ �

i=int Nl½ �+ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

0:5NDC
+Nl�

i�blC
c1C

cot u

0:5NDC

� �2
s

+
Pint NDC
+Nl�0:5½ �

i=int Nl½ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

0:5NDC
+Nl�

i+ 1+ blC
c2C

cotu

0:5NDC

� �2
s

2
666664

3
777775
ð26Þ

where AbC is the cross-sectional area of a corner spiral
bar, fytC is the yield strength of a corner spiral, and

sinbC = 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ s=2DCð Þ2

q
.

Similarly, the general DCSS model for a central
spiral with the left edge a distance l from the origin of
the coordinate system, V l

L, can be derived by equations
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(15) to (25) with DL substituted for DC, where DL is
the diameter of a central spiral

V l
L =AbLfytL sin bL

X
sin a1

i + sin a2
i

� 	
=AbLfytL sin bL

Pint NDL
+Nl�0:5½ �

i=int Nl½ �+ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:5NDL

+Nl�
i�blL
c1L

cot u

0:5NDL

� �2
s

+
Pint NDL
+Nl�0:5½ �

i=int Nl½ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:5NDL

+Nl�
i+ 1+ blL

c2L
cot u

0:5NDL

� �2
s

2
666664

3
777775
ð27Þ

where sinbL = 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ s=2DLð Þ2

q
, NDL

=(DL=s) cot u,
blL = l=2DL, c1L = cot u� (s=2DL), and c2L =
cot u+(s=2DL)

Same as five-circular-hoop reinforcement, the criti-
cal shear crack in five-spiral reinforcement intercepts
the edge of three spirals as shown in Figure 4(b). Based
on the critical shear crack condition, five-spiral reinfor-
cement consists of two corner spirals with l = 0, two
corner spirals with l=DL � DC, and one central spiral
with l = 0. For each of the corner spirals with l = 0,
the DCSS model V 0

C is equation (26) with l = 0

V 0
C =AbCfytC sin bC

Xint NDC
�0:5½ �

i= 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

0:5NDC
� i

c1C
cot u

0:5NDC

 !2
vuut +

Xint NDC
�0:5½ �

i= 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

0:5NDC
� i+ 1

c2C
cot u

0:5NDC

 !2
vuut

2
64

3
75 ð28Þ

For each of the corner spirals with l =DL � DC, the
DCSS model V

DL�DC

C is equation (26) with l=DL � DC

V
DL�DC

C =AbCfytC sin bC

Pint NDC
+NDL�DC

�0:5½ �

i=int NDL�DC½ �+ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

0:5NDC
+NDL�DC

�
i�b

DL�DCð ÞC
c1C

cot u

0:5NDC

 !2
vuut

+
Pint NDC

+NDL�DC
�0:5½ �

i=int NDL�DC½ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

0:5NDC
+NDL�DC

�
i+ 1+ b

DL�DCð ÞC
c2C

cot u

0:5NDC

 !2
vuut

2
66666664

3
77777775 ð29Þ

where NDL�DC
=(DL � DC=s) cot u and b DL�DCð ÞC =

DL � DC=2DC

For the central spiral, the DCSS model V 0
L is equa-

tion (27) with l = 0

V 0
L =AbLfytL sin bL

Xint NDL
�0:5½ �

i= 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

0:5NDL
� i

c1L
cot u

0:5NDL

 !2
vuut +

Xint NDL
�0:5½ �

i= 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

0:5NDL
� i+ 1

c2L
cot u

0:5NDL

 !2
vuut

2
64

3
75 ð30Þ

The DCSS model for the entire five-spiral reinforce-
ment is

Vs = 2V 0
C + 2V

DL�DC

C +V 0
L ð31Þ

Six-circular-hoop and six-spiral reinforcement

Similar to five-circular-hoop and five-spiral reinforce-
ment, the critical case for shear strength of six-circular-
hoop and six-spiral reinforcement is when the shear
crack intercepts the edges of hoops or spirals as illu-
strated in Figure 5.

Under weak axis loading. The DCSS model for six-circu-
lar-hoop reinforcement under weak axis loading can
be extended from that for five-circular-hoop reinforce-
ment (equation (14)) by adding shear strength from
one more central hoop (V 0

L ) as defined below

Vs = 2V 0
C + 2V

DL�DC

C + 2V 0
L ð32Þ

where the parameters have the same definitions as
equation (14). The DCSS model for six-spiral reinfor-
cement is equation (32) with definitions of parameters
same as equation (31).

Under strong axis loading. There are two potential critical
cases for shear strength of six-circular-hoop or six-
spiral reinforcement under strong axis loading
(Figures 5(c) and 5(d)). The shear resistance of reinfor-

cement is the smaller value obtained from the two criti-
cal cases
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Vs = min V1,V2ð Þ ð33Þ

V1 = 2V 0
C + 2V

DL + dil�DC

C +V 0
L +V

dil

L ð34Þ

V2 = 2V
�dil

C + 2V
DL�DC

C +V
�dil

L +V 0
L ð35Þ

where V1 and V2 are the DCSS models for critical cases
1 and 2, respectively, and dil is the center-to-center
spacing of the two central spirals or circular hoops.
For the corner hoop sets of six-circular-hoop reinforce-
ment, V 0

C, V
DL + dil�DC

C , V
�dil

C , and V
DL�DC

C in the above
equations are calculated using equation (9) with l= 0,
DL + dil � DC, �dil, and DL � DC, respectively. For the
central hoop sets, V 0

L , V
dil

L , and V
�dil

L in the above equa-
tions are calculated using equation (10) with l = 0, dil,
and �dil, respectively. Similarly, for the corner spirals
of six-spiral reinforcement, V 0

C, V
DL + dil�DC

C , V
�dil

C , and
V

DL�DC

C are calculated using equation (26) with l= 0,
DL + dil � DC, �dil, and DL � DC, respectively. For the
central spirals, V 0

L , V
dil

L , and V
�dil

L are calculated using
equation (27) with l= 0, dil, and �dil, respectively.

Eleven-circular-hoop and 11-spiral reinforcement

Under weak and strong axis loading, there are three
and four potential critical cases, respectively, for shear
strength of 11-circular-hoop and 11-spiral reinforce-
ment (Figure 6). These critical cases correspond to con-
ditions in which the shear crack passes through the
edges of hoops or spirals.

Under weak axis loading. Under weak axis loading, the
shear strength of reinforcement is the smallest value
obtained from the three critical cases (Figure 6(a) and
(b) for circular hoop sets and spirals, respectively)

Vs = min V1,V2,V3ð Þ ð36Þ

where V1, V2, and V3 are the DCSS models for critical
cases 1, 2, and 3, respectively, and are defined as
follows

V1 = 2V 0
C + 2V 2DL�DC

C + 2V 0
L + 3V 0:5DL

L + 2V DL

L ð37Þ

V2 = 2V�0:5DL

C + 2V
1:5DL�DC

C + 2V�0:5DL

L + 3V 0
L + 2V 0:5DL

L

ð38Þ

V3 = 2V�DL

C + 2V
DL�DC

C + 2V�DL

L + 3V�0:5DL

L + 2V 0
L

ð39Þ

where parameters on the right side of the equations are
calculated by equations (9) and (10) for corner and cen-
tral circular hoop sets, and equations (26) and (27) for
corner and central spirals, respectively, with the super-
script of the parameters substituted for l. In 11-circu-
lar-hoop and spiral reinforcement, there are 7 central
and 4 corner hoop sets or spirals.

Under strong axis loading. Under strong axis loading, the
shear strength of reinforcement is the smallest value
obtained from the four potential critical cases

Figure 5. Discrete computational methods for shear strengths of (a) six-circular-hoop and (b) six-spiral reinforcement under weak
axis loading and (c) six-circular-hoop and (d) six-spiral reinforcement under strong axis loading.
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(Figure 6(c) and (d) for circular hoop sets and spirals,
respectively)

Vs = min V1,V2,V3,V4ð Þ ð40Þ

where V1, V2, V3, and V4 are the DCSS models for cases
1, 2, 3, and 4, respectively, and are defined as follows

V1 = 2V 0
C + 2V

3DL�DC

C +V 0
L

+ 2V 0:5DL

L +V DL

L + 2V 1:5DL

L +V 2DL

L

ð41Þ

V2 = 2V�0:5DL

C + 2V
2:5DL�DC

C +V�0:5DL

L

+ 2V 0
L +V 0:5DL

L + 2V DL

L +V 1:5DL

L

ð42Þ

V3 = 2V�DL

C + 2V
2DL�DC

C +V�DL

L

+ 2V�0:5DL

L +V 0
L + 2V 0:5DL

L +V DL

L

ð43Þ

V4 = 2V�1:5DL

C + 2V
1:5DL�DC

C +V�1:5DL

L

+ 2V�DL

L +V�0:5DL

L + 2V 0
L +V 0:5DL

L

ð44Þ

where the parameters on the right side of the equations
are defined in the same way as mentioned previously.

Simplified shear strength calculation

Equation (1) is the simplified calculation method of
equation (2) and is intended for use in columns with
equal-sized hoops or spirals. For 5-, 6-, and 11-circu-
lar-hoop and spiral reinforcement, the central and

corner hoops or spirals have different diameters and
are usually designed with bars of different sizes. They
are typically designed with the same yield strength and
must have the same vertical spacing. Therefore, equa-
tion (1) can be rewritten as follows for 5-, 6-, and 11-
circular-hoop and spiral reinforcement

Vs = nC

p

2

AbCfytDC

s
+ nL

p

2

AbLfytDL

s
ð45Þ

where nC is the number of corner hoops or spirals and
nL is the number of central (large) hoops or spirals. It
has been proposed in earlier research (Yin et al. 2011)
that every hoop set or spiral in multi-circular-hoop or
multi-spiral reinforcement should have the volumetric
ratio rs, at least equal to that required for confinement
purpose. For simplicity, it is assumed that the rs of the
corner hoop set or spiral is equal to that of the central
hoop set or spiral, that is

rs =
4AbL

DLs
=

4AbC

DCs
ð46Þ

Therefore, if the diameter ratio of the central to cor-
ner hoop or spiral is denoted as k =DL=DC, then
AbC =AbL=k in order to satisfy equation (46). Equation
(45) can be further rewritten as

Vs =
nC

k2
+ nL

� �p

2

AbLfytDL

s
ð47Þ

Figure 6. Discrete computational methods for shear strengths of (a) 11-circular-hoop and (b) 11-spiral reinforcement under weak
axis loading and (c) 11-circular-hoop and (d) 11-spiral reinforcement under strong axis loading.
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Relationship of DCSS models and
simplified calculation

Definition of u factor

To investigate the relationship between shear strength
by the DCSS model and that by equation (47) for 5-,
6-, and 11-circular-hoop and spiral reinforcement, a u
factor is defined as follows

u=
Vs byDCSS models

Vs by equation(47)
ð48Þ

Examination of the DCSS models and equation
(47) shows that the u factor depends on k and s=DL.
For six-circular-hoop and spiral reinforcement under
strong axis loading, additionally, the u factor depends
on dil. Furthermore, for 6- and 11-circular-hoop and
spiral reinforcement, the u factor also depends on the
loading direction, that is, strong or weak axis loading.
Note that the DCSS models are applicable to any
shear crack angle (by adjusting u). To calculate the u
factor, the angle of the critical crack, u, used in the
DCSS models is assumed to be 45�, which is the same
as the crack angle adopted in the conventional simpli-
fied calculation (equation (1)).

Results of u factor analysis

For five-circular-hoop and spiral reinforcement, the u
factor was calculated for various s=DL and for two val-
ues of k covering the typical range of k (3.0 and 3.6;
Figure 7). Similarly, for six-circular-hoop and spiral
reinforcement, the u factor was calculated for various
s=DL and k = 3:0 and k = 3:6 for both weak and
strong axis loading. For strong axis loading, two val-
ues of dil (R and 1:5R) that cover the typical range of
dil were examined (Figure 8). For 11-circular-hoop

and spiral reinforcement, the u factor was calculated
for DC = 0:75DL (k = 1:33), typical in practical appli-
cation (Figure 9). From Figures 7 to 9, it can be seen
that the u factor is usually lower than one, which
means the simplified calculation yields shear strength
higher than the DCSS model. In other words, the sim-
plified calculation is unconservative. Moreover, the u
factor tends to decrease as the value of s=DL increases.
This means simplified calculation becomes increasingly
unconservative with increasing s=DL. This is because
increasing s=DL reduces the number of reinforcement
layers intercepted by a shear crack. This tends to cause
a greater difference between the actual average of
sin ai and p=4, leading to a larger error when using
the simplified calculation.

To control the error of the simplified calculation,
the value of s=DL should be limited if the simplified cal-
culation is to be used without any modification. Tables
1 to 3 list the limiting values of s=DL within which the
maximum probable difference between the DCSS
model and simplified calculation is � 10% (i.e. u
� 0.90) for 5-, 6-, and 11-circular-hoop and spiral rein-
forcement, respectively. For cases with s/DL less than
or equal to the limits in Table 1, the simplified calcula-
tion may be used without any modification. For cases
with s=DL larger than the limits, the simplified calcula-
tion can be used together with the u factor (Figures 7
to 9) to calculate the shear strength. An example of
using the simplified calculation for shear strength with
the u factor is provided in the Appendix 1.

Figure 10 compares the u factors for 5-, 6-, and 11-
circular-hoop and spiral reinforcement. In this com-
parison, k = 3:0 for five- and six-circular-hoop and
spiral reinforcement and dil =R for six-circular-hoop
and spiral reinforcement. The comparison shows that
the u factor tends to increase with increasing number
of hoops or spirals for a given value of s=DL. This is

Figure 7. The u factor for five-circular-hoop and five-spiral reinforcement: (a) k= 3:0 and (b) k= 3:6.
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because for a given s=DL value, increasing the number
of hoops or spirals increases interception points
between the shear crack and transverse reinforcement,
reducing the error of using p=4 to approximate sin ai

in the calculation of shear resistance. Moreover, the
comparison shows that as the number of hoops or
spirals increases, the u factor curve becomes more irre-
gular due to the increased number of critical cases.

Figure 8. The u factor for six-circular-hoop and spiral reinforcement with k= 3: (a) under weak axis loading; under strong axis
loading with (b) dil = R and (c) dil = 1:5R; with (d) k= 3:6 under weak axis loading; and under strong axis loading with (e) dil = R
and (f) dil = 1:5R.

Table 1. Limiting values of s=DL for u � 0:90 for five-circular-
hoop and spiral reinforcement.

Five-circular-hoop reinforcement Five-spiral reinforcement

k = 3.0 k = 3.6 k = 3.0 k = 3.6

0.165 0.165 0.215 0.175
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Figure 9. The u factor for 11-circular-hoop and spiral reinforcement: (a) under weak axis loading and (b) under strong axis loading.

Figure 10. Comparison of the u factor for 5-, 6-, and 11-circular-hoop reinforcement (a) under weak axis loading and (b) under
strong axis loading; and for 5-, 6-, and 11-spiral reinforcement (c) under weak axis loading and (d) under strong axis loading.

Table 2. Limiting values of s=DL for u � 0:90 for six-circular-hoop and spiral reinforcement.

Case Six-circular-hoop reinforcement Six-spiral reinforcement

k = 3.0 k = 3.6 k = 3.0 k = 3.6

Weak 0.195 0.195 0.215 0.18
Strong dil = R 0.245 0.245 0.22 0.195
Strong dil = 1:5R 0.245 0.245 0.225 0.18
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Conclusion

This study developed the DCSS models for 5-, 6-, and
11-circular-hoop and spiral reinforcement and exam-
ined the relationships between the DCSS models and
simplified calculation method. Important conclusions
are summarized as follows:

1. Based on actual, discrete locations of intercep-
tion points between critical shear cracks and
transverse reinforcement, the DCSS models were
developed for 5-, 6-, and 11-circular-hoop and
spiral transverse reinforcement. Compared with
the conventional simplified shear strength calcu-
lation, which is applicable only to cases with
small values of s=DL, the DCSS models can be
used for any values of s=DL.

2. Conventional simplified shear strength calcula-
tion based on small reinforcement spacing
assumption for multi-circular-hoop or multi-
spiral reinforcement was revised for 5-, 6-, and
11-circular-hoop and spiral transverse reinfor-
cement. The revised simplified calculation was
divided into two parts: one for central, large
hoop sets, or spirals and the other for corner
hoop sets or spirals. A u factor was proposed
to be used with the simplified calculation when
the value of s=DL is large.

3. The u factor plots show that the u factor is usu-
ally lower than one, which means the simplified
calculation is typically unconservative.
Moreover, the u factor tends to decrease, which
means the simplified calculation becomes more
unconservative, with increasing s=DL due to the
decreased number of interception points
between the critical shear crack and transverse
reinforcement. Limiting values of s=DL were
proposed for 5-, 6-, and 11-circular-hoop and
spiral transverse reinforcement to control the
maximum probable error of the simplified calcu-
lation to be equal to or less than 10%.
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Appendix 1

Shear strength calculation example

The cross-section of a six-spiral column is shown in
Figure 11 and has the following design parameters

s= 85 mm; u= 458; dil =R= 270 mm

Corner spirals: DC = 180 mm, fytC = 490 MPa,
AbC = 28:27 mm2 (D6 bars)

Central spirals: DL = 540 mm, fytL = 490 MPa,
AbL = 78:54 mm2 (D10 bars)

Shear strength by DCSS models

Shear strength provided by six-spiral transverse rein-
forcement under weak axis loading is calculated by
equation (32)

Vs = 2V 0
C + 2V

DL�DC

C + 2V 0
L ð49Þ

For corner spirals

sin bC =
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1+ s
2DC

� �2
r = 0:9732

c1C = cot u� s

2DC

= 0:7639

c2C = cot u+
s

2DC

= 1:2361

and

NDC
=

DC

s
cot u= 2:12

For l= 0

blC =
l

2DC

= 0

and

Nl =
l

s
cot u= 0

V 0
C =AbCfytC sin bC

Xint NDC
�0:5½ �

i= 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

0:5NDC
� i

c1C
cot u

0:5NDC

 !2
vuut +

Xint NDC
�0:5½ �

i= 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

0:5NDC
� i+ 1

c2C
cot u

0:5NDC

 !2
vuut

2
64

3
75= 37, 655N

For l=DL � DC = 360 mm

blC =
l

2DC

= 1

and

Nl =
l

s
cot u= 4:23

V l= 360
C =AbCfytC sin bC

Pint NDC
+Nl�0:5½ �

i=int Nl½ �+ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:5NDC

+Nl�
i�blC
c1C

cot u

0:5NDC

� �2
s

+
Pint NDC
+Nl�0:5½ �

i=int Nl½ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:5NDC

+Nl�
i+ 1+ blC

c2C
cot u

0:5NDC

� �2
s

2
6666664

3
7777775

= 38, 366N

For central spirals

Figure 11. Cross-section design of a six-spiral column.
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sin bL =
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1+ s
2DL

� �2
r = 0:9969

c1L = cot u� s

2DL

= 0:9213

c2L = cot u+
s

2DL

= 1:0787

and

NDL
=

DL

s
cot u= 6:35

For l= 0

blL =
l

2DL

= 0 and Nl =
l

s
cot u= 0

V 0
L =AbLfytL sin bL

Xint NDL
�0:5½ �

i= 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

0:5NDL
� i

c1L
cot u

0:5NDL

 !2
vuut +

Xint NDL
�0:5½ �

i= 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

0:5NDL
� i+ 1

c2L
cot u

0:5NDL

 !2
vuut

2
64

3
75= 363, 666N

Shear strength under weak axis loading is

Vs = 2V 0
C + 2V

DL�DC

C + 2V 0
L =879kN

Shear strength provided by six-spiral transverse
reinforcement under strong axis loading is calculated
by equation (33)

Vs = min V1,V2ð Þ ð50Þ

where

V1 = 2V 0
C + 2V DL + dil�DC

C +V 0
L +V dil

L ð51Þ

V2 = 2V
�dil

C + 2V
DL�DC

C +V
�dil

L +V 0
L ð52Þ

V
�dil =�270
C = 50, 689N

V
DL + dil�DC = 630
C = 43, 847N

V
dil = 270
L = 373, 914N

V
�dil =�270
L = 386, 786N

V1 = 2V 0
C + 2V

DL + dil�DC

C +V 0
L +V

dil

L =901kN

V2 = 2V�dil

C + 2V DL�DC

C +V�dil

L +V 0
L =929kN

Vs = min V1,V2ð Þ= 901kN

Shear strength by simplified calculation
method

From equation (45)

Vs =u nC

p

2

AbCfytDC

s
+ nL

p

2

AbLfytDL

s

� �
ð53Þ

where nC = 4 (number of corner spirals) and nL = 2

(number of central spirals)

s

DL

= 0:16

Under weak axis loading with k =DL=DC =
540=180= 3:0: u= 0:92 (Figure 8(a))

Vs =u nC

p

2

AbCfytCDC

s
+ nL

p

2

AbLfytLDL

s

� �

= 0:92 3 4 3
p

2
3

28:27 3 490 3 180

85

�

+ 2 3
p

2

78:54 3 490 3 540

85

�
= 876, 210N’ 876 kN

Under strong axis loading with k = 3:0 and dil =R:
u= 0:93 (Figure 8(b))

Vs =u nC

p

2

AbCfytCDC

s
+ nL

p

2

AbLfytLDL

s

� �

= 0:93 3 4 3
p

2
3

28:27 3 490 3 180

85

�

+ 2 3
p

2

78:54 3 490 3 540

85

�
= 885, 734N’ 886 kN

If u is not applied for equation (45), under both
weak and strong axis loading

Vs = nC

p

2

AbCfytCDC

s
+ nL

p

2

AbLfytLDL

s

= 4 3
p

2
3

28:27 3 490 3 180

85

+ 2 3
p

2

78:54 3 490 3 540

85

= 952, 402N’ 952kN

Table 4 summarizes calculation results. Note that
s=DL = 0:16, which is less than the limiting values of

Table 4. Comparison of calculation results.

Loading direction Shear strength (kN)

DCSS
model

Simplified
model w/o u

Simplified
model with u

Weak axis 879 952 876
Strong axis 901 952 886

DCSS: discrete computational shear strength.
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s=DL for weak and strong axis loading in Table 2
(0.215 and 0.22, respectively). Therefore, the differ-
ences between the DCSS models and simplified calcu-
lation without the u factor are expected to be less than
10%. The actual differences are 8.3% and 5.7% for
weak and strong axis loading, respectively. With the

use of the u factor, the difference is reduced to be less
than 2%. Another observation from Table 4 is that
without the u factor, the simplified calculation is not
able to reflect the difference in shear strength between
two loading directions.
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