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This study developed discrete computational shear strength (DCSS) 
models for two-circular-hoop, two-spiral, seven-circular-hoop, 
and seven-spiral transverse reinforcement for reinforced concrete 
columns. The DCSS models show that as a shear crack moves along 
the column, the reinforcement shear strength varies periodically. 
The critical shear crack, which yields the smallest shear strength, 
can be from any of the shear cracks that intercept at least one edge 
of a hoop series or spiral. The conditions are presented for when a 
shear crack intercepts the two edges of every hoop series or spiral, 
which leads to a drastic reduction in shear strength. At the critical 
shear crack condition, the DCSS models yield shear strength lower 
than the integral averaging method. To control the error of the inte-
gral averaging method, the ratio of the reinforcement spacing to 
hoop or spiral diameter should be limited. Charts to correct the 
error are presented for use in practice.

Keywords: discrete computation; integral averaging method; multi-circular- 
hoop transverse reinforcement; multi-spiral transverse reinforcement; 
shear reinforcement.

INTRODUCTION
Circular-hoop or spiral transverse reinforcement is well- 

known for its better confinement effectiveness and restraint 
for longitudinal bar buckling than rectilinear hoop or tie 
transverse reinforcement. Circular-hoop or spiral reinforce-
ment can effectively resist concrete expansion and longitu-
dinal bar buckling by developing hoop tension at any location 
along hoop or spiral perimeter, whereas rectilinear hoop or 
tie reinforcement is only effective at corners or bends. Circular- 
hoop or spiral reinforcement has been extended to oblong 
columns (Fig. 1(a)) in the form of two interlocking hoops or 
spirals. Results of previous studies have shown that even 
with a less amount of transverse reinforcement, two-spiral 
oblong columns (Fig. 1(a)) have better seismic performance 
than conventional tied columns.1-6 Two-spiral reinforcement 
has been applied in the Fujikawa Bridge columns in Japan.4 
The P4 column of the bridge has an oblong cross-sectional 
shape with a dimension of 8500 x 6000 mm (335 x 236 in.). 
Each of the two spirals of the column has a diameter of 
6000 mm (236 in.) and was fabricated with D32 (No. 10) 
bars. To reduce the size of spirals in large oblong columns 
such as the Fujikawa Bridge column to relieve the difficulty 
associated with fabrication of large spirals, innovative 
seven-spiral reinforcement (Fig. 1(b)) has been proposed.7,8 
Test results have demonstrated that seven-spiral reinforcement 
is more efficient in providing shear strength compared with 
two-spiral reinforcement (Fig. 1(a)) and tie reinforcement.7 
Moreover, seven-spiral columns, even with a less amount of 
transverse reinforcement, possess higher ductility capacity 
than comparable tied columns.8

For single- and multi-circular-hoop or spiral transverse rein-
forcement, Caltrans SDC9 and AASHTO10 employ Eq. (1) to 
calculate shear strength provided by transverse reinforcement.
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Equation (1) was first discussed by Ang et al.11 and Tanaka 
and Park1 for single-spiral and two-spiral columns, respec-
tively, and can be derived as follows. Assuming transverse 
reinforcement yields at the ultimate condition of shear, shear 
resistance provided by the i-th hoop of a hoop series (for 
example, Fig. 2(a), which has two hoop series) or by the 
i-th level of a spiral (for example, Fig. 2(b), which has two 
spirals) intersected by a shear crack is Tsi = Ashfyh(sinαi

1 + 
sinαi

2)sinβ. The total shear resistance provided by all the 
levels intercepted by the crack is
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Assuming the spacing of transverse reinforcement is very 
small, a hoop series or spiral is intersected by a shear crack 
at a great number of locations such that within the range of 
αi

1 and αi
2—that is, 0 – π (Fig. 2)— sin αi

i

1∑  and sin αi
i

2∑   

can each be approximated by π/4
i

∑ , in which π/4 is the 

average value of a sine curve from 0 – π. Moreover, because 
the pitch is very small, β ≈ 90 degrees for spiral reinforce-
ment. Note that β is 90 degrees for circular-hoop reinforce-
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Fig. 1—(a) Two-circular-hoop or two-spiral reinforcement; 
and (b) seven-circular-hoop or seven-spiral reinforcement.



228 ACI Structural Journal/March-April 2016

ment regardless of the spacing. Therefore, sinβ in Eq. (2) 
equals 1. Hence, Eq. (2) becomes

	

V A f

A f

s sh yh i i
i

sh yh
i

= +∑

= ⋅ ⋅ +



∑ =

sin (sin sin )β α α

π π

1 2

1
4 4

    AA fsh yh
i

π
2





∑

	 (3)

Also due to the small spacing assumption, the number of 
levels of a hoop series or spiral intercepted by a shear crack, 
which in reality is a discrete (integer) number, is approximated 
by the ratio of the vertical projection of the portion of the crack 
crossing a hoop series or spiral (D′cotθ) to the vertical spacing 
of the hoop series or spiral (s), D′cotθ/s (Fig. 2). Hence, n hoop 
series or spirals result in a total shear resistance of
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which, with θ = 45 degrees, becomes Eq. (1). Equation (4) is 
referred to as integral averaging method herein.

To investigate the error associated with the small spacing 
assumption used in the integral averaging method (Eq. (4)), 
discrete computational shear strength (DCSS) models that aim 
to discretely compute shear strength contributed by each inter-
section between a shear crack and reinforcement have been 
studied. Dancygier12 derived a DCSS model for single-circular- 
hoop reinforcement and found that the integral averaging 
method yielded results that were more than 10% unconser-
vative when s/(D′cotθ) ≥ 0.25. Kim and Mander13 simplified 
Dancygier’s model by considering the critical shear crack 
that produced the smallest shear strength. In addition, Kim 
and Mander13 developed a DCSS model for single-spiral rein-
forcement and assumed β equals 90 degrees. By comparing 
the results of the developed DCSS models and the integral 

averaging method, Kim and Mander suggested that when 
s/(D′cotθ) ≥ 0.2, the results of the integral averaging method 
should be modified by correction factors to limit probable 
unconservativeness to be less than 10%. Jaafar14 used discrete 
computation to examine the error of the integral averaging 
method for single-spiral reinforcement and two-spiral rein-
forcement under strong axis bending and concluded that the 
error increased with increasing spiral spacing (s) and shear 
crack angle (θ). Note that in Jaafar’s discrete computation, 
analytical representations for locations where a shear crack 
intercepts spiral reinforcement still need to be developed.

The objective of this study is to develop DCSS models 
for two- and seven-circular-hoop, and two- and seven-spiral 
transverse reinforcement under weak and strong axis bending. 
With the developed models, the error of the integral averaging 
method (Eq. (4)) for such types of reinforcement is examined.

RESEARCH SIGNIFICANCE
It is the current practice to use the integral averaging 

method to calculate the shear strength of multi-circular-hoop 
and multi-spiral transverse reinforcement. However, for 
two- and seven-circular-hoop and spiral reinforcement, the 
error of the method has not received much attention in the 
literature. This study developed DCSS models for two- and 
seven-circular-hoop and spiral transverse reinforcement 
under strong and weak axis bending to examine the error 
of the integral averaging method and to provide tools for 
engineers to calculate the shear strength of such types of 
reinforcement when the error is significant.

PROPOSED DCSS MODELS
DCSS models for single-circular-hoop and single-spiral 

reinforcement are derived first in this section using a new, 
coordinate-based approach. The models are then extended 
to develop DCSS models for two- and seven-circular-hoop, 
and two- and seven-spiral reinforcement.

Fig. 2—(a) Two-circular-hoop column; and (b) two-spiral column.
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DCSS model for single-circular-hoop 
reinforcement

A Cartesian coordinate system is used to facilitate deri-
vation of the DCSS model for single-circular-hoop rein-
forcement. As shown in Fig. 3, the origin of the coordinate 
system is set in the horizontal x-direction at an arbitrary 
distance l from the edge of reinforcement and in the y-di-
rection (vertical) is at the level of an arbitrary hoop. A shear 
crack with an angle θ to the longitudinal axis of the column 
is placed in the coordinate system so that the extension of the 
crack passes through the origin. Note that by changing the 
value of l, the crack can be set to start at any location along 
the left edge of the reinforcement. Based on the coordinate 
system, the shear crack can be represented by a function, 
y = xcotθ. The i-th hoop intersected by the shear crack can 
be represented by y = i · s. Therefore, the x-coordinate of the 
intersection of the i-th hoop and the shear crack is
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The value of xi is bounded between the left and right edges 
of the reinforcement.

	 l ≤ xi ≤ l + D′	 (6)

Combining Eq. (5) and (6), the value of i is bounded 
as follows
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where i is an integer, numbering the hoops; and N = D′cotθ/s, 
representing the ratio of the projection of the shear crack 

along the y-axis to the spacing of the hoops. From Fig. 3 and 
trigonometry, sinαi

1 and αi
2 of Eq. (2) can be expressed by 

the following equation. Note that xi = istanθ from Eq. (5) and 
N = D′cotθ/s = 2Rcotθ/s.
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Substituting the previous equation into Tsi of Eq. (2) and 
noting that β = 90 degrees for a hoop, the shear resistance 
provided by the i-th hoop can be expressed as
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The total shear resistance provided by all the hoops inter-
sected by the shear crack is
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where the range of i is based on Eq. (7). Equation (10) is the 
DCSS model for single-circular-hoop reinforcement and is 
applicable to any shear crack location (by adjusting l), and 
to any shear crack angle (by adjusting θ). Equation (10) is 
the same as Dancygier’s model,12 even though they appear 
to be different.

DCSS model for single-spiral reinforcement
Similar to single-circular-hoop reinforcement, a Carte-

sian coordinate system is set such that the X-axis passes 
through the left edge of spiral reinforcement and the distance 
between the system origin and spiral edge is l (Fig. 4). In 
Fig. 4, the spiral reinforcement is drawn with dashed and 
solid lines, representing half of the spiral on the back side of 
the column and that on its front side, respectively. Based on 
the coordinate system, the equation for the back side spiral 
line of the i-th spiral level is
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The equation for the front side spiral line of the i-th spiral 
level is
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A shear crack is assumed with its extension passing 
through the origin of the coordinate system (Fig. 4) and can 
be expressed by y = xcotθ. The x-coordinate of the intersec-
tion between the crack and the back side spiral line of the 

Fig. 3—Cartesian coordinate system for single-circular- 
hoop reinforcement.
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i-th spiral level can be derived by solving the equations of 
the crack line and back side spiral line.
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where b = l/2D′ and a1 = cotθ – s/2D′. The xi
1 has the following 

range (from the left edge to right edge of the spiral).

	 l ≤ xi
1 ≤ D′ + l	 (14)

Substituting Eq. (13) into Eq. (14) and solving for the 
range of i gives
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where i is an integer, numbering the spiral level. With trigo-
nometry and Eq. (13), sinαi

1 of Eq. (2) for single-spiral rein-
forcement can be expressed as
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Similarly, the x-coordinate of the intersection between the 
shear crack and the front side spiral line of the i-th spiral level is
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where a2 = cotθ + s/2D′. The xi
2 has the same range as xi

1 
(Eq. (14)).

	 l ≤ xi
2 ≤ D′ + l	 (18)

Substituting Eq. (17) into Eq. (18) and solving for the 
range of i gives
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Using the same procedure as in deriving sinαi
1 (Eq. (16)), 
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The shear resistance provided from the back and front side 
spiral lines of the i-th spiral level can be obtained with Eq. (2) 
with sinαi

1 and sinαi
2 calculated by Eq. (16) and (20), respec-

tively. Summing the shear resistances from all intersection 
points yields the total shear resistance.
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where the ranges of i for sinαi
1 and that for sinαi

2 are based 
on Eq. (15) and (19), respectively. Equation (21) is the DCSS 
model for single-spiral reinforcement and is applicable to any 
shear crack location (by adjusting l), and to any shear crack 
angle (by adjusting θ). The Kim and Mander model13 for 
single-spiral reinforcement is the same as Eq. (21) without 
sinβ and with l = 0. Note that it is necessary to include the 
effect of l (crack location) in Eq. (21) to allow Eq. (21) to be 
extended to two- and seven-spiral reinforcement.

DCSS models for two- and seven-circular-hoop 
and two- and seven-spiral reinforcement

The DCSS models for two- and seven-circular-hoop and 
two- and seven-spiral reinforcement can be derived based 
on Eq. (10) and (21), respectively. For two-circular-hoop or 
two-spiral reinforcement under weak axis bending (Fig. 5(a)), 
because the two circular-hoop series or two spirals have the 
same distance from the origin of the coordinate system, the 
DCSS model is simply twice that of single-circular-hoop 
(Eq. (10)) or single-spiral (Eq. (21)) reinforcement.

Fig. 4—Cartesian coordinate system for single-spiral 
reinforcement.
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For two-circular-hoop or two-spiral reinforcement under 
strong axis bending (Fig. 5(b)), the DCSS model is the 
superposition of two DCSS models for single-circular-hoop 
(Eq. (10)) or single-spiral (Eq. (21)) reinforcement with l = l 
and with l = l + dil.
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For seven-circular-hoop or seven-spiral reinforcement 
under weak axis bending (Fig. 5(c)), the DCSS model is 
the superposition of three DCSS models for single-circular- 
hoop (Eq. (10)) or single-spiral (Eq. (21)) reinforcement 
with l = l, l + 0.5D′, and l + D′.
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For seven-circular-hoop or seven-spiral reinforcement 
under strong axis bending (Fig. 5(d)), the DCSS model is the 
superposition of five DCSS models for single-circular-hoop 
(Eq. (10)) or single-spiral (Eq. (21)) reinforcement with, 
l = l, l + 0.5D′, l + D′, l + 1.5D′, and l + 2D′.
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Note that the aforementioned models are applicable to any 
shear crack location l and any shear crack angle θ.

NORMALIZED SHEAR STRENGTH FACTOR
To examine the relationship between the proposed DCSS 

models and the integral averaging method (Eq. (4)), a 
normalized shear strength factor φ is defined as follows

	 ϕ =
V

V
s

s
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 by integral averaging method (Eq. (4)))

	 (26)

The φ factor depends on the shear crack location l, the 
shear crack angle θ, the ratio of the vertical spacing to the 
diameter of a hoop or spiral s/D′. For two-circular-hoop and 
spiral reinforcement, the φ factor also depends on the center-
to-center spacing of hoops or spirals dil. Note that sinβ in the 
DCSS models for spiral reinforcement can be expressed as 
a function of s/D′.

	 sin
( )

β =
+ ′

1

1 2 2s D/
	 (27)

Fig. 5—Distance from hoop or spiral edge to original of coordinate system and potential critical crack locations for: (a) 
two-circular-hoop and spiral reinforcement under weak axis bending; (b) two-circular-hoop and spiral reinforcement under 
strong axis bending; (c) seven-circular-hoop and spiral reinforcement under weak axis bending; and (d) seven-circular-hoop 
and spiral reinforcement under strong axis bending.
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CRITICAL SHEAR CRACK
The critical shear crack corresponds to the crack that 

produces the smallest shear strength. To examine the loca-
tion of the critical shear crack, shear strengths for varying 
crack locations (l/D′) were calculated by each of the 
proposed DCSS models. Results were expressed using the 
φ factor. In this section, only the results with a shear crack 
angle θ of 45 degrees is presented. However, the findings 
of this section are applicable to other crack angles as well 
because, as will be shown later, the location of the critical 
shear crack is independent of θ. Figure 6 shows the relation-
ships between the φ factor and l/D′ for representative s/D′. 
All the curves in Fig. 6 oscillate periodically with varying 
crack locations. Crack locations corresponding to the valleys 
of the oscillations represent the locations for local critical 
shear cracks, which produce local minimum values of shear 
strength. The global minimum value—that is, the smallest 
shear strength—can be governed by any of the local critical 
shear cracks. In other words, the critical shear crack can be 
from any of the local critical shear cracks. Examination of 
the locations of local critical shear cracks revealed that they 
correspond to when a shear crack intercepts at least one hoop 
or spiral edge (independent of θ). Interception at the edge 
yields no shear strength because sinα = 0 (Eq. (2)). Figure 5 
illustrates cases when interception occurs at the edge.

For two-circular-hoop and spiral reinforcement under 
weak axis bending, there are two cases in which interception 
occurs at the edge (Fig. 5(a)). Figures 6(a) and 6(b) show the 
relationships between φ and l/D′ for two-circular-hoop and 
two-spiral reinforcement, respectively. It can be seen that the 
two cases yield the same local minimum shear strength due 
to the symmetry of the reinforcement layout. Therefore, the 
local minimum value is the global minimum value. When, for 
example, s/D′ = 0.25 and 0.4 for the two-circular-hoop and 
two-spiral reinforcement, respectively, the two cases occur 
at the same value of l/D′. This means the critical shear crack 
intercepts the left and right edges simultaneously, which is 
illustrated in Fig. 7(a) and 7(c) for two-circular-hoop and 
two-spiral reinforcement, respectively. This occurs when 
D′cosθ/s =  integer for two-circular-hoop reinforcement and 
D′cosθ/s = integer + 0.5 for two-spiral reinforcement. This 
is the most unfavorable situation for shear strength. When, 
for example, s/D′ = 0.30 for both the two-circular-hoop and 
two-spiral reinforcement, the two cases occur at different 
values of l/D′. This means the critical shear crack does not 
intercept the left and right edges simultaneously. Three such 
cases, one case (1) and two cases (2), are illustrated in Fig. 7(b) 
and 7(d) for two-circular-hoop and two-spiral reinforcement, 
respectively, to explain why the two cases occur alternately 
as the shear crack moves along the column.

For two-circular-hoop and spiral reinforcement under 
strong axis bending, there are four cases in which intercep-
tion occurs at the edge (Fig. 5(b)). Figures 6(c) and 6(d) illus-
trate relationships between φ and l/D′ for two-circular-hoop 
and two-spiral reinforcement with dil = R, respectively. It can 
be seen that Cases 1 and 4 yield the same shear strength, 
as do Cases 2 and 3, due to symmetry of the reinforcement 
layout. Therefore, to determine the smallest shear strength, it 
is sufficient to examine only Cases 1 and 2. For two-circular- 

hoop reinforcement, when, for example s/D′ = 0.25 (Fig. 6(c)), 
all the cases occur at the same l/D′, which means all the 
edges are intercepted by the critical shear crack simultane-
ously (Fig. 8(a)). This leads to a drastic reduction in shear 
strength and occurs when D′cosθ/s = integer and dilcosθ/s = 
integer. When, for example, s/D′ = 0.40, the four cases occur 
at different l/D′ (Fig. 8(b)). The global minimum is governed 
by Case 1 (= Case 4). For two-spiral reinforcement, due to 
the complicated geometry, a shear crack cannot intercept 
all four edges simultaneously. Figure 8(c) illustrates s/D′ = 
0.25, where Cases 1 and 2 occur at the same l/D′, as do Cases 3 
and 4. Figure 8(d) illustrates s/D′ = 0.30, in which the shear 
crack intercepts only one edge at a time. The smallest shear 
strength is governed by Case 2 (= Case 3) (Fig. 8(d)).

For seven-circular-hoop and seven-spiral reinforcement 
under weak axis bending, they do not have the same number of 
cases in which interception occurs at the edge. Seven-circular- 
hoop reinforcement has five cases (Cases 1, 2, 3, 4, and 5 
in Fig. 5(c)). Seven-spiral reinforcement has one more case 
(Case 3′ in Fig. 5(c)) because the right edge of the two spirals 
on the left is not at the same level as the left edge of the two 
spirals on the right, as illustrated in Fig. 9(a). The case in 
which the right edge of the two left spirals is intercepted is 
referred to as Case 3, while the left edge of the two right spirals 
is intercepted is referred to as Case 3′. Due to symmetry of 
the reinforcement layout, however, Case 3 yields the same 
shear strength as Case 3′. Moreover, for both seven-circular- 
hoop and seven-spiral reinforcement, Cases 1 and 2 yield the 
same shear strength as Cases 5 and 4, respectively. There-
fore, to determine the smallest shear strength, it is sufficient 
to examine only Cases 1, 2 and 3. Similarly, under strong axis 
bending, seven-circular-hoop and seven-spiral reinforcement 
do not have the same number of cases. The former has seven 
cases (Cases 1, 2, 3, 4, 5, 6, and 7 in Fig. 5(d)), while the 
latter has three more cases (Cases 3′, 4′, and 5′), as illustrated 
in Fig. 9(b). For seven-circular-hoop reinforcement, Cases 1, 
2, and 3 yield the same shear strength as Cases 7, 6, and 5, 
respectively. Therefore, only Cases 1, 2, 3, and 4 need to be 
investigated when determining the smallest shear strength. 
For seven-spiral reinforcement, due to symmetry, Cases 1, 
2, 3, 4, and 5 yield the same shear strength as Cases 7, 6, 5′, 
4′, and 3′, respectively. Therefore, to determine the smallest 
shear strength, Cases 1, 2, 3, 4, and 5, need to be examined.

Figures 6(e) and (f) shows representative relationships 
between φ and l/D′ for seven-circular-hoop and seven spiral 
reinforcement, respectively, under weak axis bending, and 
Fig. 6(g) and 6(h) show those under strong axis bending. The 
relationships are illustrated in Fig. 10 and 11 for under weak 
and strong axis bending, respectively. In seven-circular-hoop 
reinforcement, when D′cotθ/s = integer×2, all the edges are 
intercepted by the critical shear crack simultaneously, which 
does not exist for seven-spiral reinforcement. The compli-
cated geometry of seven-spiral reinforcement due to inter-
locking of helical shapes avoids interception of all edges by 
one shear crack and, hence, prevents a drastic reduction in 
shear strength as seen in seven-circular-hoop reinforcement.

The values of φ in Fig. 6 show that the results of the DCSS 
models can be higher (φ > 1) or lower (φ < 1) than those of 
the integral averaging method, depending on crack locations 
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(l/D′). However, the smallest shear strength for a given s/D′ 
by each DCSS model is always lower than that of the integral 
averaging method.

Based on the above discussion, the DCSS model corre-
sponding to the critical shear crack, referred to as critical 
DCSS model herein, can be determined by the following 
equations. For two-circular hoop and spiral reinforcement 
under weak axis bending, Case 1 (l = 0) determines the crit-
ical DCSS model. Based on Eq. (22) with l = 0

	 V Vs
two weak

s
one_
_= 2 0	 (28)

For two-circular hoop and spiral reinforcement under 
strong axis bending, the smaller of Cases 1 and 2 (l = 0 and  
l = –dil) determines the critical DCSS model. Based on 
Eq. (23) with l = 0 and l = –dil

	 V V Vs
two strong

s
two strong

s d
two strong

il

_
_

_
_

_min( , )= −0 	 (29)

For seven-circular hoop and spiral reinforcement under 
weak axis bending, the smallest of Cases 1, 2, and 3 (l = 0, 
l = –0.5D′, and l = –D′) determines the critical DCSS model. 
Based on Eq. (24) with l = 0, l = –0.5D′, and l = –D′

Fig. 6—Effect of l/D′ on φ factor: (a) two-circular-hoop and (b) two-spiral reinforcement under weak axis bending; (c) two‑ 
circular-hoop and (d) two-spiral reinforcement under strong axis bending with dil = R; (e) seven-circular-hoop and (f) seven-
spiral reinforcement under weak axis bending; and (g) seven-circular-hoop and (h) seven-spiral reinforcement under strong 
axis bending.
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	 V V V Vs
seven weak

s
seven weak

s D
seven weak

s D
_

_
_

_ .
_

_min( , ,= − ′ − ′0 0 5
sseven weak_ ) 	 (30)

For seven-circular hoop reinforcement under strong 
axis bending, the smallest of Cases 1, 2, 3, and 4 (l = 0,  
l = –0.5D′, l = –D′, and l = –1.5D′) determines the critical 
DCSS model. Based on Eq. (25) with l = 0, l = –0.5D′, l = 
–D′, and l = –1.5D′

	V V Vs
seven strong

s
seven strong

s D
seven strong_

_
_

_ .
_min( , ,= − ′0 0 5 VV Vs D

seven strong
s D
seven strong

_
_

_ .
_, )− ′ − ′1 5 		

		  (31)

For seven-spiral reinforcement under strong axis bending, 
the smallest of Cases 1, 2, 3, 4, and 5 (l = 0, l = –0.5D′, l = 
–D′, l = –1.5D′, and l = –2D′) determines the critical DCSS 
model. Based on Eq. (25) with l = 0, l = –0.5D′, l = –D′, l = 
–1.5D′, and l = –2D′

Fig. 7—Cases when interception occurs at the edge: for two-circular-hoop reinforcement under weak axis bending: (a) s/D′ = 
0.25, and (b) s/D′ = 0.3; and for two-spiral reinforcement under weak axis bending: (c) s/D′ = 0.4, and (d) s/D′ = 0.3.

Fig. 8—Cases when interception occurs at the edge: for two-circular-hoop reinforcement under strong axis bending: (a) s/D′ 
= 0.25, and (b) s/D′ = 0.4; and for two-spiral reinforcement under strong axis bending: (c) s/D′ = 0.25, and (d) s/D′ = 0.3.

Fig. 9—Cases when interception occurs at the edge for 
seven-spiral reinforcement: (a) under weak axis bending; 
and (b) under strong axis bending.
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φ FACTOR FOR CRITICAL SHEAR CRACK
With the critical DCSS models (Eq. (28) to (32)), the φ 

factor for the critical shear crack was calculated for various 
values of s/(D′cotθ). Results are plotted in Fig. 12. For 
two-circular-hoop and spiral reinforcement, three cases with 
dil = R, dil = 1.25R, and dil = 1.5R are presented. Note that the 
Caltrans BDS15 requires dil in the range of 1.0 to 1.5 times 
the radius of the hoop or spiral R. For two- and seven-spiral 
reinforcement, sinβ the part of the φ factor depends only 
on s/D′ (Eq. (27)). Therefore, different values of θ lead to 
different relationships of φ versus s/(D′cotθ). The relation-
ships for θ of 30 and 45 degrees, which cover most practical 
applications, are plotted in Fig. 12.

All the values of φ in Fig. 12 are less than 1, meaning 
the shear strength by the critical DCSS models is less than 
that by the integral averaging method. The φ factor tends 
to decrease with increasing s/(D′cotθ). This means the error 
of the integral averaging method increases with increasing 
s/(D′cotθ). If 10% probable error is used as a criterion for 
acceptance of integral averaging, the highest allowable 
values of s/(D′cotθ) are 0.24, 0.24, 0.33, 0.24, 0.24, and 
0.24 for two-circular-hoop reinforcement under weak axis 
bending; two-circular-hoop reinforcement under strong 
axis bending with dil = R, 1.25R, and 1.5R; and seven- 
circular-hoop reinforcement under weak axis bending, 
and strong axis bending, respectively. Because reinforced 
concrete columns typically have θ ≤ 45 degrees, θ can be 
conservatively taken as 45 degrees. Thus, the highest allow-
able values of s/D′ are 0.24, 0.24, 0.33, 0.24, 0.24, and 0.24, 
respectively. For two-spiral reinforcement under weak axis 
bending, two-spiral reinforcement under strong axis bending 
with dil = R, 1.25R, and 1.5R, and seven-spiral reinforcement 
under weak axis bending, and strong axis bending, respec-
tively. Thus, the highest allowable values of s/(D′cotθ) are 

0.22, 0.39, 0.29, 0.38, 0.39, and 0.43, respectively, with θ of 
45 degrees. They are 0.22, 0.33, 0.28, 0.31, 0.33, and 0.33, 
respectively, for θ of 30 degrees. Again, θ can be conser-
vatively taken as 45 degrees. Therefore, the highest allow-
able values of s/D′ are 0.22, 0.39, 0.29, 0.38, 0.39, and 0.43, 
respectively. When s/D′ is larger than the above values, engi-
neers can either use the critical DCSS models (Eq. (28) to 
(32)) to calculate shear strength or use the φ factor plots in 
Fig. 12 to adjust results of the integral averaging method. 
An example of shear strength calculation for two-spiral rein-
forcement using the critical DCSS models, φ factor plots, 
and integral averaging method is given in Appendix A.* 

COMPARISON WITH TEST RESULTS
In Table 1, the test data of two-spiral and seven-spiral 

columns from earlier studies2-5,7 are compared with the crit-
ical DCSS models and the integral averaging method. The 
design parameters of the columns are listed in the second to 
ninth columns of Table 1. The 10th column of Table 1 lists the 
concrete shear strength for each column calculated based on 
Caltrans BDS15 (same as ACI 31816), in which the effective 
shear area is taken as 0.8 gross area of the section. The 11th and 
12th columns of Table 1 list the reinforcement shear strength 
for each column computed by the critical DCSS models Vs1 
and that by the integral averaging method Vs2, respectively. 
The shear crack angle is assumed to be 45 degrees according 
to the codes.9,10,15,16 The 13th column of Table 1 lists the φ 
factor (Vs1/Vs2) for each column. The values of the φ factor 
show that the integral averaging method yields errors ranging 
from 2% to 16%. Moreover, columns that have an error larger 
than 10% are those with s/D′ larger than the limit presented 
in the previous section. For instance, Columns 1, 3, and 4 are 
two-spiral columns subjected to strong axis bending. They 
have s/D′ = 0.56—higher than the limit stated in the previous 
section for such a reinforcement type (0.29 to 0.39), and 

*The Appendix is available at www.concrete.org/publications in PDF format, 
appended to the online version of the published paper. It is also available in hard copy 
from ACI headquarters for a fee equal to the cost of reproduction plus handling at the 
time of the request.

Fig. 10—Cases when interception occurs at the edge: for seven-circular-hoop reinforcement under weak axis bending: (a) s/D′ = 
0.25, and (b) s/D′ = 0.35; and for seven-spiral reinforcement under weak axis bending: (c) s/D′ = 0.25, and (d) s/D′ = 0.35.



236 ACI Structural Journal/March-April 2016

show errors of 12 to 14%. Moreover, Column DM2R-SL—a 
seven-spiral column subjected to strong axis bending—has 
s/D′ = 0.44, which slightly higher than the limit of 0.43. 
The error of the integral averaging method for this column 
is 16%. The 17th and 18th columns of Table 1 list the ratio 

of the measured shear strength to nominal shear strength for 
each column based on the critical DCSS model Vn1 and that 
based on the integral averaging method Vn2, respectively. 
Both Vn1 and Vn2 are conservative for most of the columns 
due to the conservative nature of concrete shear strength and 

Fig. 11—Cases when interception occurs at the edge: for seven-circular-hoop reinforcement under strong axis bending: (a) s/D′ = 
0.25, and (b) s/D′ = 0.35; and for seven-spiral reinforcement under strong axis bending: (c) s/D′ = 0.25, and (d) s/D′ = 0.35.

Fig. 12—Effect of s/(D′cotθ) on φ factor: (a) two-circular-hoop and spiral reinforcement under weak axis bending; two-cir-
cular-hoop and spiral reinforcement under strong axis bending for (b) dil = R, (c) dil = 1.25R, and (d) dil = 1.5R; seven-circu-
lar-hoop and spiral reinforcement (e) under weak axis bending, and (f) under strong axis bending.
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the conservative assumption of a crack angle of 45 degrees. 
Vn2 is less conservative than Vn1 because integral averaging 
overestimates the reinforcement shear strength. The Vn1 is 
unconservative for Column ISH1.25, and Vn2 is unconserva-
tive for Columns ISH1.25, ISH1.5, and DM2RI-SS. Note that 
even though these three columns failed in shear, they showed 
ductility capacities greater than 4.0, which is expected to 
greatly reduce the shear strength of the columns.

CONCLUSIONS
DCSS models were developed in this study for two-circular- 

hoop and two-spiral transverse reinforcement, and seven-cir-
cular-hoop and seven-spiral transverse reinforcement for rein-
forced concrete columns. With the developed models, critical 
shear crack locations and relationships between the critical 
DCSS models and the integral averaging method were exam-
ined. Important conclusions are summarized as follows.

1. The DCSS models show that the reinforcement shear 
strength varies periodically as a shear crack moves along the 
column. When a shear crack intercepts the edge of at least one 
hoop series or spiral, local minimum shear strength occurs. 
The critical shear crack that yields the smallest shear strength 
(global minimum value) can be from any of the cases in which 
interception occurs at the edge. There are one, two, three, four, 
and five such cases that need to be examined to determine 
the smallest shear strength for two-circular hoop and spiral 
reinforcement under weak axis bending, and under strong axis 
bending, seven-circular hoop and spiral reinforcement under 
weak axis bending, seven-circular hoop reinforcement under 

strong axis bending, and seven-spiral reinforcement under 
strong axis bending, respectively.

2. All the left and right edges of hoop series or spirals are 
intercepted simultaneously by the critical shear crack, when 
D′cotθ/s = integer for two-circular-hoop reinforcement 
under weak axis bending, D′cotθ/s = integer+0.5 for 
two-spiral reinforcement under weak axis bending, D′cotθ/s = 
integer and dilcotθ/s = integer for two-circular-hoop reinforce-
ment under strong axis bending, and D′cotθ/s = integer×2 for 
seven-circular-hoop reinforcement. This can cause a drastic 
reduction in shear strength and should be avoided in design. 
The critical shear crack does not intercept all edges simulta-
neously for two-spiral reinforcement under strong axis 
bending and for seven-spiral reinforcement due to more 
complicated reinforcement geometries.

3. The critical DCSS models give lower values of shear 
strength than the integral averaging method. If 10% prob-
able error is the criterion for acceptance of the integral aver-
aging method, the highest allowable values of s/D′ are 0.24, 
0.24, 0.33, 0.24, 0.24, and 0.24 for two-circular-hoop rein-
forcement under weak axis bending, two-circular-hoop rein-
forcement under strong axis bending with dil = R, 1.25R, and 
1.5R, and seven-circular-hoop reinforcement under weak 
axis bending, and strong axis bending, respectively. The 
highest allowable values of s/D′ are 0.22, 0.39, 0.29, 0.38, 
0.39, and 0.43 for two-spiral reinforcement under weak axis 
bending, two-spiral reinforcement under strong axis bending 
with dil = R, 1.25R, and 1.5R, and seven-spiral reinforcement 
under weak axis bending, and strong axis bending, respec-
tively. If s/D′ is larger than the above values, the critical 

Table 1—Calculation nominal shear strength of two- and seven-spiral columns and comparison to 
experimental result

Column
name Type s/D′ P/Agfc′

fc′, 
MPa

dt, 
mm

s, 
mm

dil 
(×R)

fyh, 
MPa

Vc, 
kN

Vs1, 
kN

Vs2, 
kN φ

VN1, 
kN

VN2, 
kN

Vmax, 
kN Vmax/Vn1 Vmax/Vn2

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18)

12 Two-S 0.56 0.09 32 6.35 127 1.2 420* 77 66 75 0.88 143 152 247 1.72 1.62

32 Two-S 0.56 0.09 32 6.35 127 1.47 420* 84 65 75 0.86 149 159 275 1.85 1.73

42 Two-S 0.56 0.09 32 6.35 127 1.2 420* 77 66 75 0.88 143 152 236 1.65 1.55

Inter 13 Two-S 0.25 0.022 35 6.35 89 1.11 448 183 171 180 0.95 354 363 540 1.53 1.49

Inter 23 Two-S 0.25 -0.1 34 6.35 89 1.11 448 0 171 180 0.95 171 180 414 2.42 2.30

Inter 33 Two-S 0.25 0.35 35 6.35 89 1.11 448 328 171 180 0.95 499 508 732 1.47 1.44

Inter 43
Two-S 0.25 -0.1 37 6.35 89 1.11 448 0 171 180 0.95 171 180 379 2.22 2.10

Two-S 0.25 0.35 37 6.35 89 1.11 448 340 171 180 0.95 511 521 676 1.32 1.30

64 Two-S 0.37 0.05 31 6 200 0.93 364 357 81 87 0.93 438 444 529 1.21 1.19

ISH1.05 Two-S 0.17 0.10 34 4.05 38 1.0 466 77 110 113 0.97 187 190 241 1.29 1.27

ISH1.255 Two-S 0.11 0.07 50 4.05 25 1.25 449 103 163 166 0.98 265 268 251 0.95 0.94

ISH1.55 Two-S 0.11 0.08 34 4.05 25 1.25 467 87 165 172 0.96 253 260 253 1.00 0.97

DM1R-SL7 Two-S 0.22 0.06 64 10 120 1.0 605 611 628 672 0.93 1239 1283 1787 1.44 1.39

DM1R-SS7 Two-W 0.19 0.06 70 10 100 1.0 605 640 746 806 0.93 1386 1446 1833 1.32 1.27

DM2R-SL7 Seven-S 0.44 0.07 58 8 120 NA 648 583 679 806 0.84 1262 1389 1722 1.36 1.24

DM2R-SS7 Seven-W 0.37 0.06 69 8 100 NA 648 635 911 967 0.94 1546 1602 1744 1.13 1.09

DM2RI-SS7 Seven-W 0.30 0.07 55 8 80 NA 648 565 1134 1209 0.94 1699 1774 1734 1.02 0.98
*Specified yield strength of transverse reinforcement.

Notes: 1 MPa = 145 psi; 1 mm = 0.0394 in.; 1 kN = 0.225 kip.
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DCSS models or φ factor plots developed in this study can 
be used to calculate shear reinforcement strength.

4. Comparison with the test results of shear-critical 
columns from earlier studies shows that both the nominal 
shear strength based on the critical DCSS models (Vn1) and 
that based on the integral averaging method (Vn2) are conser-
vative for most of the columns. Vn2 is less conservative than 
Vn1 because integral averaging overestimates the reinforce-
ment shear strength.
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NOTATION
Ag	 =	 gross area of section
Ash	 =	 cross-sectional area of transverse reinforcing bar
Av	 =	 total area of shear reinforcement
a1	 =	 coefficient = cotθ – s/2D′
a2	 =	 coefficient = cotθ + s/2D′
b	 =	 coefficient = l/2D′
D′	 =	 diameter of circular hoop or spiral
dil	 =	 center-to-center spacing of two-circular hoop or two-spiral 

reinforcement
dt	 =	 diameter of transverse reinforcing bar
fc′	 =	 concrete compressive strength
fyh	 =	 yield strength of transverse reinforcement
i	 =	 an integer, numbering levels of hoop series or spiral
l	 =	 distance from origin of coordinate system to hoop or spiral 

edge
N	 =	 D′cotθ/s = ratio of projection of shear crack along Y-axis to 

spacing of hoops
n	 =	 number of circular-hoop series or spirals
P	 =	 axial force (positive for compression)
R	 =	 0.5D′ = radius of circular hoop or spiral
s	 =	 spacing of transverse reinforcement
Tsi	 =	 shear resistance provided from i-th level of circular-hoop 

series or spiral
Vc	 =	 shear strength provided by concrete
Vmax	 =	 maximum lateral force obtained from experiment
Vn1	 =	 nominal shear strength based on critical DCSS models
Vn2	 =	 nominal shear strength based on integral averaging method 

(Eq. (4))
Vs	 =	 shear strength provided by shear reinforcement
Vs1	 =	 shear reinforcement strength computed by critical DCSS 

models
Vs2	 =	 shear reinforcement strength computed by integral aver-

aging method (Eq. (4))
Vs l
one
_ 	 =	 shear strength provided by single hoop or spiral reinforce-

ment for shear crack location
Vs
seven strong_

	=	 critical shear strength provided by seven-circular-hoop or 
seven-spiral reinforcement under strong axis bending

Vs l
seven strong
_

_ 	= 	 shear strength provided by seven-circular-hoop or seven-
spiral reinforcement under strong axis bending for shear crack 
location l

Vs
seven weak_ 	 =	 critical shear strength provided by seven-circular-hoop or 

seven-spiral reinforcement under weak axis bending
Vs l
seven weak
_

_ 	 =	 shear strength provided by seven-circular-hoop or seven-
spiral reinforcement under weak axis bending for shear crack 
location l

Vs
two strong_ 	 =	� critical shear strength provided by two-circular-hoop or 

two-spiral reinforcement under strong axis bending
Vs l
two strong
_

_ 	 =	� shear strength provided by two-circular-hoop or two-spiral rein-
forcement under strong axis bending for shear crack location l

Vs
two weak_ 	 =	� critical shear strength provided by two-circular-hoop or 

two-spiral reinforcement under weak axis bending
Vs l
two weak
_

_ 	 =	� shear strength provided by two-circular-hoop or two-spiral rein-
forcement under weak axis bending for shear crack location l

x	 =	 x-coordinate of Cartesian coordinate system
xi	 =	� x-coordinate of intersection of shear crack and i-th hoop or 

spiral
y	 =	 y-coordinate of Cartesian coordinate system
αi	 =	� angle between horizontal and line from center of spiral or 

circular hoop to point intersected by shear crack for i-th 
intersection

αi
1	 =	 αi for back side of hoop or spiral (Fig. 2).

αi
2	 =	 αi for front side of hoop or spiral (Fig. 2).

β	 =	� angle between transverse reinforcement and longitudinal axis 
of column

φ	 =	� ratio between shear reinforcement strength calculated by 
DCSS models and by integral averaging method (Eq. (4))

θ	 =	 angle between shear crack and longitudinal axis of column
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