鋼筋混凝土梁撓曲極限狀態拉力筋應變與 縱向鋼筋用量之關係

杜 昱 石*
歐 昱 辰**

摘要

本文依循混凝土結構設計規範之撓曲分析方法,探討鋼筋混凝土雙筋梁,在相同設計 灣矩與斷面尺寸下,撓曲極限狀態拉力筋應變與鋼筋用量之關係。研究結果闡釋拉力筋與壓力筋用量,隨極限狀態拉力筋應變變化而改變之趨勢。根據所呈現之趨勢,本研究發現,當極限狀態下,相較於介於 0.004 至小於 0.005 範圍之其他應變值,採用拉力筋應變為 0.005 之設計可得最小總鋼筋使用量,並得最佳斷面變形能力。若拉力筋應變大於 0.005,斷面極限狀態變形能力隨著應變之增加而增加,但總限狀態變形能力隨著應變之增加而增加,但總關筋量也可能隨之增加。本研究並探討耐震設計拉力筋用量上限條款與前述結論之關係,最終提出滿足規範之拉壓力筋配置辦法。

1. 前言

根據現行混凝土結構設計規範[1],為確保 梁於撓曲極限極限狀態下有足夠韌性,因此規定極限狀態時最外受拉鋼筋之淨拉應變 ε_t 不得小於 0.004。又規範[1]規定,當 ε_t 大於 0.005 時,屬拉力控制斷面,極限狀態時韌性較佳,因此採用較高之強度折減係數($\phi=0.9$)。當 ε_t 介於 0.005 至鋼筋降伏應變之間時,屬過渡斷面,極限狀態時韌性較差,因此 ϕ 值隨著 ε_t 之減少,由 0.005 線性遞減至由螺箍筋之 0.7 或其他情形之 0.65。

對一 ε_{t} 介於 0.004 至 0.005 的梁而言,在 撓曲極限狀態下, ε_{t} 越小,梁斷面所能提供的

^{*} 國立台灣科技大學營建工程系大學部學生

^{**}國立台灣科技大學營建工程系副教授

計算彎矩強度M,越大,因為混凝土壓力區較 大,能提供較大的壓合力,因此容許較大之拉 力區合力,導致較高之 M_n 。但 ε ,越小, ϕ 值 越低,在須維持一定量之設計強度 M_{ν} 下,可 能會需要更高之 M_{x} 。又 ε ,低代表韌性低。另 一方面來說, ε ,越大,梁斷面所能提供的 M_n 就越少,然而 ϕ 值較高,在需維持一定量之 M_{ij} 下,所需的 M_n 可能較低,且韌性較高。因 M_n 和 M_{*} 之間,有一 ϕ 值之作用, ϕ 值與 ε , 成正 相關,但 M_n 與 ε ,呈負相關,又 M_n 與材料強 度及用量有關,在上述原理綜合作用下,想要 直接看出在M,以及斷面尺寸與材料強度固 定下, ε ,與成本指標"鋼筋用量"之變化關係實 屬不易。本研究依據規範之分析與設計方法, 透過數學推導,以明確的原理原則來闡述 ε , 與 鋼筋用量之變化關係。工程師透過此關係可瞭 解 ε ,變化所導致的鋼筋用量的改變,並瞭解極 限狀態下採用 ε , 小於 0.005 是否有機會可以減 少鋼筋用量。

許多文獻[2-4]均指出,雙筋設計有諸多優點,例如壓力筋可減少梁因潛變與乾縮造成之長期撓度;可與拉力筋形成另一力學機制,產

生更高的彎矩強度;壓力筋可支撐並錨定箍筋。就耐震設計而言,壓力筋的使用可增加斷面曲率韌性,因此規範[1]於耐震設計篇中,特別規定於梁柱交接面及其它可能產生塑鉸位置,壓力鋼筋量不得小於拉力鋼筋量之半,所以實務上梁多採雙筋配置,因此本研究針對雙筋梁進行探討。又實務上梁多採矩形設計,因此本研究之對象為矩形梁。

2.固定設計彎矩強度下配筋量理論推導

2.1 推導過程中之基本假設

本研究對象為雙筋矩形梁,斷面基本尺寸之定義如圖 1 所示:其中d'為梁最外受壓纖維至受壓鋼筋形心之距離:有效梁深d為梁最外受壓纖維至受拉鋼筋形心之距離;b為梁寬;h為梁全深。為簡化推導,拉壓力筋採單排配置,此與目前實務傾向於採單排配置,使用較少數目之大號鋼筋之潮流符合。因此 ε_t 等於拉力形心位置應變 ε_s 。梁斷面達極限狀態時,混凝土壓應力之分佈假設可由 Whitney等值應力塊[5]描述。鋼筋應力應變行為假設為理想彈塑性,意即鋼筋降伏後應力維持定值。

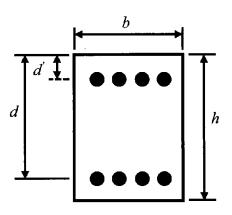


圖 1.斷面基本尺寸定義

本研究將計算彎矩強度 M_n 分為 M_{n1} 與 M_{n2} 不研究將計算彎矩強度 M_n 分為 M_{n1} 與 M_{n2} 不可分,其中 M_{n1} 為混凝土壓力區合力與相平衡之拉力筋合力所提供之彎矩強度(圖 2(a)); M_{n2} 為壓力筋與相平衡之拉力筋合力所提供之彎矩強度(圖 2(b))。 M_u 與 M_{n1} 以及 M_{n2} 之關係如式(1)所示。

$$M_{u} = \phi M_{n} = \phi (M_{n1} + M_{n2}) \tag{1}$$

透過變形諧和,極限狀態下壓力筋之應變 ε_{sc} 可由式(2)求得。

$$\varepsilon_{sc} = 0.003 - \frac{0.003 + \varepsilon_s}{d} \times d' \tag{2}$$

本研究將壓力筋配置在斷面極限狀態下仍能 降伏之處,故 $\varepsilon_{sc} \ge \varepsilon_{v}$,代入此條件,可得

$$\frac{d'}{d} \le \frac{0.003 - \varepsilon_{y}}{0.003 + \varepsilon_{o}} \tag{3}$$

若 d'/d 滿足式(3)之限制,則可確保極限狀態下壓力鋼筋降伏。

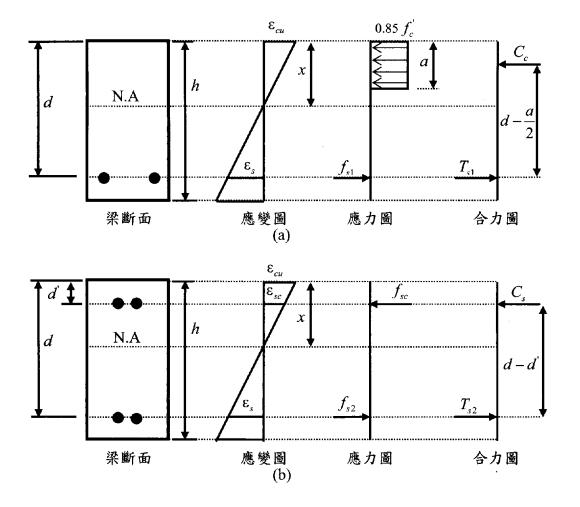


圖 2. (a) M_{n1} ; (b) M_{n2}

2.2 極限狀態下拉力筋形心位置應變介於 0.004 至 0.005

2.2.1 彎矩強度

透過變形諧和,極限狀態下中性軸深度*x*為

$$x = \frac{0.003d}{0.003 + \varepsilon_s} \tag{4}$$

Whitney 等值應力塊深度 a 為

$$a = x\beta_1 = \frac{0.003d\beta_1}{0.003 + \varepsilon_s} \tag{5}$$

其中若 f_c ' \leq 280 kgf/cm² , β_l 為 0.85,若 f_c ' > 280 kgf/cm² ,每增加 70 kgf/cm² , β_l 值減少 0.05,但 $\beta_l \geq$ 0.65 。混凝土壓力區 合力為

$$C_c = 0.85 f_c' ab = 0.85 f_c' \frac{0.003bd\beta_1}{0.003 + \varepsilon_c}$$
 (6)

對相對應拉力筋形心取彎矩,可得 M_{nl} 。

$$M_{n1} = C_c \left(d - \frac{a}{2} \right) = \frac{0.00255bd^2 \beta_1 f_c'}{0.003 + \varepsilon_s} \left(1 - \frac{0.003 \beta_1}{2(0.003 + \varepsilon_s)} \right)$$

 M_{nl} 之計算如圖 $2(\mathbf{a})$ 所示。 M_{n2} 與 M_{u} 之關係如下式所示。

$$M_{n2} = \frac{M_u}{\phi} - M_{n1} \tag{8}$$

其中 ϕ 值與 $\varepsilon_s(=\varepsilon_t)$ 之關係可由式(9)表達[1]。

$$\phi = \frac{0.9 - 0.65}{0.005 - \varepsilon_y} \left(\varepsilon_s - \varepsilon_y \right) + 0.65 = \frac{0.025 \varepsilon_s - 0.9 \varepsilon_y + \frac{13}{4000}}{0.005 - \varepsilon_y}$$

(9)

為後續推導需要以及表達設計彎矩強度具有一定的大小,吾人可將 M_u 表達成 $\varepsilon_s=0.005$ 之 M_m 的倍數,如下式所示。

$$M_u = \alpha M_{n1} \quad (M_{n1} \stackrel{.}{\succsim} + \text{in } \mathcal{E}_s = 0.005) \quad (10)$$

將式(7)取 $\varepsilon_s = 0.005$ 代入式(10)可得

$$M_{u} = \alpha \frac{0.00255bd^{2} f_{c}'(0.016 - 0.003\beta_{1})}{0.008 \times 0.016}$$
 (11)

將式(9)、式(7)與式(11)代入式(8)可得

$$M_{n2} = \alpha \frac{0.00255bd^{2} f_{c}'(0.016 - 0.003\beta_{1})}{0.008 \times 0.016} \times \frac{0.005 - \varepsilon_{y}}{0.25\varepsilon_{s} - 0.9\varepsilon_{y} + \frac{13}{4000}}$$

$$- \frac{0.00255bd^{2} f_{c}'}{0.003 + \varepsilon_{s}} \left(1 - \frac{0.003\beta_{1}}{2(0.003 + \varepsilon)}\right)$$

2.2.2 配筋量

 M_{n1} 中平衡混凝土壓力所需之拉力筋用量 A_{sr1} ,為壓力區合力 C_c (式(6))除以拉力筋降伏強度 f_v 。

$$A_{st1} = \frac{C_c}{f_v} = \frac{0.00255bd\beta_1 f_c}{f_v (0.003 + \varepsilon_s)}$$
 (13)

*Mn*₂可由第二部份**彎**矩之拉力筋合力,或壓力筋合力,乘上拉壓力筋合力之距離而求得。

$$M_{n2} = A_{st2} f_y (d - d') = A_{sc} (f_y - 0.85 f_c') (d - d')$$

其中 A_{st2} 為 M_{n2} 之拉力筋面積; A_{sc} 為 M_{n2} 之壓力筋面積。上式移項整理可得 A_{st2} 與 A_{sc} 。

$$A_{sl2} = \frac{M_{n2}}{f_{y}(d-d')} \tag{15}$$

$$A_{sc} = \frac{M_{n2}}{\left(f_y - 0.85 f_c'\right) \left(d - d'\right)}$$
 (16)

2.2.3 配筋量與拉力筋形心位置應變之關 係

透過 A_{st1} (式(13))對 ε_s 之微分,可觀察 A_{st1} 與 ε_s 之間的關係,如下式所示。

$$\frac{dA_{st1}}{d\varepsilon_{s}} = \frac{d}{d\varepsilon_{s}} \left(\frac{0.00255bd\beta_{1}f_{c}'}{f_{y} \left(0.003 + \varepsilon_{s} \right)} \right) = -\frac{0.00255bd\beta_{1}f_{c}'}{f_{y} \left(0.003 + \varepsilon_{s} \right)^{2}} \qquad \frac{d\left(A_{st2} + A_{sc} \right)}{d\varepsilon_{s}} = \frac{d}{d\varepsilon_{s}} \left[\frac{M_{n2}}{f_{y} (d - d')} + \frac{M_{n2}}{(f_{y} - 0.85f_{c}')(d - d')} \right] \tag{18}$$

由上式可發現,在 ε 。可能的範圍內, A_{ε_1} 對 ε 。 之微分皆為負值,即 ε 。越大, $A_{\rm eff}$ 用量越小。 物理意義的解釋為,當 ε 。越大,混凝土壓力區 深度越小,混凝土壓合力越小,因此用來與混 凝土壓合力平衡的拉力筋用量隨之減少。接 著,透過 $A_{st2}+A_{sc}$ (式(15)+式(16)對 ε ,之微 分,可觀察 M_{r} ,鋼筋用量與 ε 。之間的關係, 如下式所示。(18)

$$\frac{d(A_{st2} + A_{sc})}{d\varepsilon_s} = \frac{d}{d\varepsilon_s} \left[\frac{M_{n2}}{f_y(d-d')} + \frac{M_{n2}}{(f_y - 0.85 f_c')(d-d')} \right]$$
(18)

上式提出常數項

$$\frac{d(A_{xt2} + A_{xc})}{d\varepsilon_s} = \left[\frac{1}{f_y(d-d')} + \frac{1}{(f_y - 0.85f_c')(d-d')}\right] \frac{dM_{n2}}{d\varepsilon_s}$$

(19)

上式可知 $A_{sr2} + A_{sc}$ 對 ε_s 之微分正比於 M_{n2} 對 ε 。之微分。 M_n ,如式(12)所示,將其對 ε 。微 分,並加以整理可得。

$$\frac{dM_{n2}}{d\varepsilon_{s}} = 0.003bd^{2}\beta_{1}0.85f_{c}^{'} - \frac{0.25\overline{\alpha}\left(0.016 \ 0.005 \right)}{0.008 \times 0.016 \left(0.25\varepsilon_{s} - 0.9\varepsilon_{y} + \frac{13}{4000} \right)^{2}} + \frac{0.003 + \varepsilon_{s} - 0.003\beta_{1}}{\left(0.003 + \varepsilon_{s} \right)^{3}} \right] (20)$$

觀察上式右側括弧內部分,可發現當 α 值越 大,括弧之值越小,若想得負斜率之結果,則 可令中括弧為零,求解 α_0 ,可得下式。

$$\alpha_{0} = \frac{0.003 + \varepsilon_{s} - 0.003\beta_{1}}{(0.003 + \varepsilon_{s})^{3}} \times \frac{0.008 \times 0.016 \left(0.25\varepsilon_{s} - 0.9\varepsilon_{y} + \frac{13}{4000}\right)^{2}}{0.25(0.016 - 0.003\beta_{1})(0.005 - \varepsilon_{y})}$$
的 β_{1} 與 ε_{y} 值組合下, α_{0} 隨 ε_{s} 變化之最大值
$$\alpha_{0max}$$
 。

觀察式(21)可知,其中變數有 ε_s 、 β_l 、 ε_v , 若給定一組 β_1 與 ϵ_v 值,則 α_0 隨 ϵ_s 而變化。表 1 顯示在 $0.004 \le \varepsilon_s \le 0.005$ 區間內,在不同

表 1. α_{0max}

	$f_c' (\text{kgf/cm}^2)$	210	280	350	420	490	560		
	$\beta_{\rm l}$	0.85	0.85	0.8	0.75	0.7	0.65		
$f_y(\text{kgf/cm}^2)$	\mathcal{E}_{y}	$a_{_{0max}}$							
2800	0.001373	1.237	1.237	1.265	1.292	1.318	1.344		
4200	0.002059	0.966	0.966	0.986	1.007	1.028	1.048		

表 1. 之意義在於,若 $\alpha > \alpha_{0max}$,意即 $M_{u}>lpha_{0max}M_{n1}ig(arepsilon_{s}=0.005ig)$, 可 得 在 $0.004 \le \varepsilon_s \le 0.005$ 區間內,式(20)為負值,

意即 M_{n2} 隨 ${m arepsilon}_s$ 增加而遞減,而由式(19)可知, 鋼筋用量 $A_{st2}+A_{sc}$ 將隨 ε_s 增加而遞減。若 $\alpha \leq \alpha_{0max}$,則 $A_{st2} + A_{sc}$ 將隨 ε_s 增加而遞增或

先 遞 增 而 後 遞 減 。 至 於 總 鋼 筋 用 量 $A_{\rm erl}+A_{\rm sr2}+A_{\rm sc}$ 對 $\mathcal{E}_{\rm s}$ 之微分可將式(17)與式

(19)相加而得

$$\frac{d(A_{st1} + A_{st2} + A_{sc1})}{d\varepsilon_{s}} = -\frac{0.003bd\beta_{1}0.85f_{c}'}{f_{y}(0.003 + \varepsilon_{s})^{2}} + \left[\frac{1}{f_{y}(d-d')} + \frac{1}{(f_{y} - 0.85f_{c}')(d-d')}\right] \frac{dM_{n2}}{d\varepsilon_{s}} \tag{22}$$

其中 dM_{n2} / $d\varepsilon_s$ 結果如式(20)所示。在可能的材料強度、斷面設計參數以及 α 值之範圍內,式(22)皆為負值。此意謂總鋼筋用量隨著 ε_s 增加而遞減。

眾所周知,極限狀態下 ε_s 越高,代表斷面極限曲率越高,一般代表斷面擁有越佳的變形能力,有益於耐震性能。本節之推導顯示,在相同的設計彎矩強度 $M_{\rm u}$ 的條件下,於設計時採用 $\varepsilon_s=0.005$, 比 起 其 他 ε_s 值 $(0.004 \le \varepsilon_s < 0.005)$,不但有較佳的耐震

$$M_{n2} = \alpha \frac{0.003bd^{2}\beta_{1}0.85f_{c}(0.016 - 0.003\beta_{1})}{0.008 \times 0.016 \times 0.9} - \frac{0.003bd^{2}\beta_{1}0.85f_{c}}{0.003 + \varepsilon_{s}} \left(1 - \frac{0.003\beta_{1}}{2(0.003 + \varepsilon_{s})}\right)$$
(23)

性能(較大之 ε 。值),且使用較少的總鋼筋用

由於 M_u 與 ϕ 為定值,式(1)對 ε_s 微分可得下式。

$$\frac{dM_{u}}{d\varepsilon_{s}} = 0 = \phi \left(\frac{dM_{n1}}{d\varepsilon_{s}} + \frac{dM_{n2}}{d\varepsilon_{s}} \right)$$
 (24)

式(7)對 ε_s 微分可得 $\frac{dM_{nl}}{d\varepsilon_s}$,如下所示。

$$\frac{dM_{n1}}{d\varepsilon_{s}} = -\frac{0.003bd^{2}\beta_{1}0.85f_{c}^{\prime}}{\left(0.003 + \varepsilon_{s}\right)^{2}} \left(1 - \frac{0.003\beta_{1}}{0.003 + \varepsilon_{s}}\right)$$

代入式(24)可得 $\frac{dM_{n2}}{d\varepsilon_s}$

量(較小之 $A_{st1}+A_{st2}+A_{sc}$ 值)。若進一步滿足 $\alpha>\alpha_{0max}$,則無論 A_{st1} 或 $A_{st2}+A_{sc}$ 皆隨 ε_s 增加而呈遞減趨勢,代表更有效率地使用鋼筋材料。

2.3 極限狀態下拉力筋形心位置應變 大於或等於 0.005

2.3.1 彎矩強度

當 $\varepsilon_s \ge 0.005$ 時, $\phi = 0.9$, M_{n1} 之表示式, 如式(7)所示。將 $\phi = 0.9$ 代入式(8),再按式(10) 至式(12)之推導方式,可得 M_{n2} ,如下式所示。

$$\frac{dM_{n2}}{d\varepsilon_{s}} = -\frac{dM_{n1}}{d\varepsilon_{s}} = \frac{0.00255bd^{2}\beta_{1}f_{c}}{\left(0.003 + \varepsilon_{s}\right)^{2}} \left(1 - \frac{0.003\beta_{1}}{0.003 + \varepsilon_{s}}\right)$$

由式(25)與式(26),吾人可以清楚的觀察到,隨著 ε_s 的增加, M_{n1} 隨之遞減,但 M_{n2} 隨之遞增。 M_{n2} 遞增乃因 ϕ 值為常數(0.9),因此當 M_{n1} 越小, M_{n2} 則需提高,以維持相同的 M_u 。

(26)

2.3.2 配筋量

(25)

鋼筋用量 A_{sr1} 可由式(13)計算而得。 A_{sr2} 與 A_{sc} 則可分別由式(15)與式(16)求得,式中 M_{n2} 則由式(23)計算之。

2.3.3 配筋量與拉力形心位置應變之關係

 A_{st1} 對 \mathcal{E}_s 之微分結果同式(17),因此 A_{st1} 對 \mathcal{E}_s 之關係如前所述,即 \mathcal{E}_s 越大、 A_{st1} 用量越小。 $A_{st2}+A_{sc}$ 對 \mathcal{E}_s 之 微 分 同 式 (19) , 其 中

 $dM_{n2}/d\varepsilon_s$ 結果如式(26)所示,由前述兩式可知,隨 ε_s 之增加, $A_{st2}+A_{sc}$ 用量隨之提高。總鋼筋用量 $A_{st1}+A_{st2}+A_{sc}$ 對 ε_s 之微分如式 (27)所示,該式於一般材料強度範圍內為正值,代表總鋼筋用量隨 ε_s 之增加而提高。

$$\frac{d(A_{st1} + A_{st2} + A_{sc})}{d\varepsilon_s} = \frac{0.003bd\beta_1 0.85 f_c}{\left(0.003 + \varepsilon_s\right)^2} \left[-\frac{1}{f_y} + \frac{d}{d - d} \left(1 - \frac{0.003\beta_1}{0.003 + \varepsilon_s} \right) \left(\frac{1}{f_y} + \frac{1}{f_y - 0.85 f_c} \right) \right]$$
(27)

因此吾人可知,當 $\varepsilon_s \geq 0.005$,在不改變斷面設計彎矩強度 $M_{\rm u}$ 下,欲獲取極限狀態下越高的 ε_s ,第一部分彎矩 M_{n1} 的拉力筋用量 A_{st1} 需降低;第二部分彎矩 M_{n2} 的拉壓力筋總量 $A_{st2} + A_{sc}$ 需提高;總鋼筋用量則是呈現遞增之趨勢。前述推導顯示,欲獲取越佳的耐震性能(越高的 ε_s),需提高總鋼筋用量。

透過求取拉力筋總用量 $A_{st1}+A_{st2}$ 以及壓力筋用量 A_{sc} 對於對 ε_s 之微分,吾人可探討在不改變斷面設計彎矩強度 $M_{\rm u}$ 下,拉力筋與壓力筋用量與斷面變形能力之關係。首先求取拉力筋總用量 $A_{st1}+A_{st2}$ 對 ε_s 之微分,如下式所示。

$$\frac{d(A_{s1} + A_{s12})}{d\varepsilon_{s}} = -\frac{0.00255bd\beta_{1}f_{c}'}{f_{s}(0.003 + \varepsilon_{s})^{2}} \left[1 - \frac{d}{(d - d')} \left(1 - \frac{0.003\beta_{1}}{0.003 + \varepsilon_{s}}\right)\right]$$
(28)

觀察上式,可知當右側中括弧為正,則式(26) 值為負,可得 $A_{st1}+A_{st2}$ 隨 ε_s 遞減之結果。令 上式右側中括弧內為 0,可得上式正、負值之 界線。

$$1 - \frac{d}{(d - d')} \left(1 - \frac{0.003 \beta_1}{0.003 + \varepsilon_s} \right) = 0$$
 (29)

定義 (d-d')/d 為深度比(depth ratio),一般情況下此倍數範圍會介於 0.8 ± 0.95 之間。透過式(27),可求得不同 β_i 值情況下, ε_s 與深度比之關係(圖 3),此關係代表某深度比之下,拉力筋總量呈遞減趨勢之極限 ε_s ; 意即斷面深度比不變,當 ε_s 由 0.005 增大時,拉力筋總用量之趨勢為遞減,直到 ε_s 增加到圖 3 之曲線所對應的值,當 ε_s 超過圖 3 曲線所對應之值,則拉力筋總用量轉為遞增。

壓力筋用量 A_{sc} 對於對 ε_{s} 之微分如下式所示。

$$\frac{dA_{sc}}{d\varepsilon_s} = \left[\frac{1}{\left(f_y - 0.85 f_c' \right) \left(d - d' \right)} \right] \frac{dM_{n2}}{d\varepsilon_s} \quad (30)$$

其中 $\dfrac{dM_{n2}}{darepsilon_s}$ 如式(26)所示。因式(26)恆為正

值,所以壓力筋用量隨著 ε_s 之增加,恆為遞增。前述推導顯示,在相同的設計彎矩強度下,欲提高斷面的變形能力,則需提高壓力筋用量,至於拉力筋的用量則需先減少而後增加。

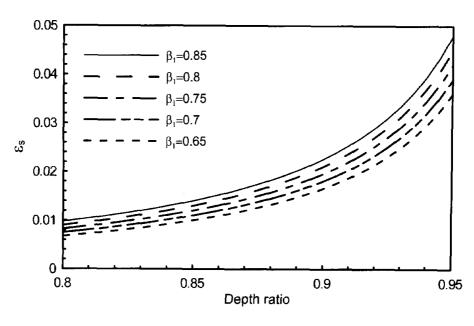


圖 $3. \varepsilon$ 。與深度比(depth ratio)之關係

根據前述推導之結果,圖4顯示某 $\alpha > \alpha_{0max}$ 之梁配筋量,與極限狀態 ε_s 於 $0.004 \le \varepsilon_s \le 0.01$ 之關係,圖中 A_{st} 為總拉力筋用量 $(A_{st} = A_{st1} + A_{st2})$ 。圖4清楚顯示,在設計彎矩 M_u 不變的情形下, $\varepsilon_s = 0.005$ 可得最小總鋼筋用量 $(A_s = A_{st1} + A_{st2} + A_{sc})$ 。又由圖4 可知,在 $0.004 \le \varepsilon_s \le 0.005$ 區間內, $A_{st2} + A_{sc}$ 亦呈現遞減之趨勢。圖5 顯示某 $\alpha < \alpha_{0max}$ 之梁配筋量,與極限狀態 ε_s 於 $0.004 \le \varepsilon_s \le 0.01$ 之關係。同樣地, $\varepsilon_s = 0.005$ 可得最小總配筋量,但因 $\alpha < \alpha_{0max}$,因此在 $0.004 \le \varepsilon_s \le 0.005$ 區間內, $A_{st2} + A_{sc}$ 呈現遞增之趨勢。

由於 ε_s 越大,代表越佳的耐震性能,且因 $\varepsilon_s=0.005$ 可得最小總鋼筋用量,因此不建議 工程師採用極限狀態時 $0.004 \le \varepsilon_s < 0.005$ 之 設計,因為此範圍之 ε_s ,相較於 $\varepsilon_s=0.005$,不但得使用較多的鋼筋,且得較差變形能力的 斷面。當 $\varepsilon_s>0.005$ 時,越高的 ε_s (越佳的耐 震性能),需要越高的總鋼筋用量方能達成。

本研究假設壓力筋於極限狀態降伏。壓力筋之降伏與否,只對 A_{sc} 之用量造成影響,在 $\varepsilon_{s} \leq 0.005$ 之情況下,因為壓力筋不降伏而造成之壓力筋用量提升,在一般情況下並不會改變 A_{sc} 之用量與 ε_{s} 之關係,而在 $\varepsilon_{s} \geq 0.005$ 之區域則會使原就遞增之結果更加顯著。

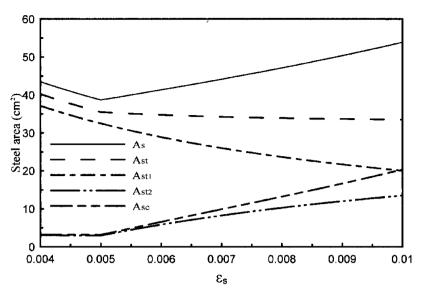


圖 4. 一梁 ε_s 與鋼筋用量之關係

 $(b=30 \,\mathrm{cm} \cdot d=60 \,\mathrm{cm} \cdot d'=7 \,\mathrm{cm} \cdot f_c'=280 \,\mathrm{kgf} \,/\,\mathrm{cm}^2 \cdot f_y=4200 \,\mathrm{kgf} \,/\,\mathrm{cm}^2 \cdot M_u=68 \,\mathrm{tf-m})$

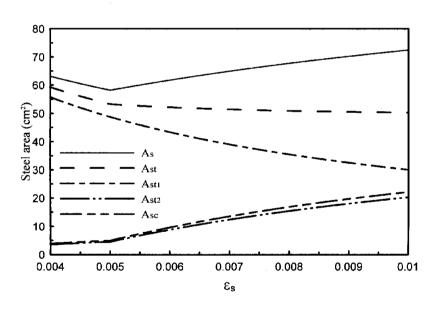


圖 5. 一梁 ε_s 與鋼筋用量之關係

 $(b=30 \,\mathrm{cm} \cdot d=60 \,\mathrm{cm} \cdot d'=7 \,\mathrm{cm} \cdot f_c'=280 \,\mathrm{kgf} /\mathrm{cm}^2 \cdot f_y=2800 \,\mathrm{kgf} /\mathrm{cm}^2 \cdot M_u=68 \,\mathrm{tf-m})$

3.耐震設計拉力筋上限與設計方法

3.1 拉力筋用量之上限

現行規範[1]之耐震設計之特別規定篇,針對梁之縱向鋼筋,規定拉力鋼筋比不得大於 $(f_c+100)/4f_y$,亦不得大於 0.025。前者為確保梁有足夠韌性,後者為確保拉力筋之使用

量不致於過多而影響施工性。表 2 列出不同 f_c 與 f_y 組合下,符合前述規定之最大拉力筋之值。如 2.2.3 節所述,在設計彎矩 M_u 不變的情形下, $\varepsilon_s=0.005$ 可得最小總鋼筋用量,若滿足 $\alpha>\alpha_{0max}$,則可以更有效率地使用 M_{n2} 之鋼筋($A_{st2}+A_{sc}$),因此本研究針對 $\varepsilon_s=0.005$,就前述拉力筋上限進行深入探討。

吾人可將式(13)除以有效斷面積 bd ,可得第一部分彎矩 M_{n1} 的拉力筋比 ρ_{n1} ,如下式所示。

$$\rho_{t1} = \frac{A_{st1}}{bd} = \frac{0.003\beta_1 0.85 f_c'}{f_v(0.003 + \varepsilon_s)}$$
(31)

若將 $\varepsilon_{\rm s} = 0.005$ 代入式(31),可得以極限狀態

下 $\varepsilon_s=0.005$ 作設計時, M_{n1} 所需之拉力鋼筋 比 ρ_{n1} ,計算結果如表 3 所示。對照表 2 與表 3, 吾人可發現,當 $f_s=210~{
m kgf/cm^2}$,以及當 $f_y = 4200 \, \mathrm{kgf} \, / \, \mathrm{cm}^2 \, \mathrm{gg} \, f_c \leq 420 \, \mathrm{kgf} \, / \, \mathrm{cm}^2$ 時, M_{n1} 所需之 ρ_{n1} 小於耐震設計最大拉力筋比限制。意即針對前述材料組合,規範允許斷面極限狀態下 $\varepsilon_s = 0.005$ 。至於其他材料組合,滿足 $\varepsilon_s = 0.005$ 所需的拉力筋用量皆超過最大拉力筋限制,由表 3 可知,這些材料組合之拉力筋最大鋼筋比皆為 0.025,如前所述,最大鋼筋比 0.025 之規定是為確保鋼筋不致於過多而影響施工性,換言之,為滿足施工性需求,這些材料組合得使用 $\varepsilon_s > 0.005$ 之設計。 M_{n1} 配置完成後再進一步配置 M_{n2} ,令式(1)等於式(10),且代入 $\phi = 0.9$,解 M_{n2} 可得

$$M_{n2} = \frac{0.003d^2\beta_1b0.85f_c}{0.003 + 0.005} \left(1 - \frac{0.003\beta_1}{2(0.003 + 0.005)}\right) \frac{\alpha - 0.9}{0.9}$$
(32)

代入式(14),可解得 M_{n2} 之拉力筋比 ho_{l2} 為

$$\rho_{t2} = \frac{A_{st2}}{bd} = \frac{0.003d\beta_1 0.85 f_c'}{0.003 + 0.005} \left(1 - \frac{0.003\beta_1}{2(0.003 + 0.005)} \right) \frac{\alpha - 0.9}{0.9} \frac{1}{f_y(d - d')}$$
(33)

假設 d-d'=0.8d,令 $\alpha=\alpha_{0max}$ (表 1), 則針對不同材料組合,可解得配置完 M_{n1} 後, 進一步以配置 M_{n2} 為手段使斷面符合設計彎 矩強度需求($\alpha=\alpha_{0max}$),所需之拉力鋼筋比 ρ_{i2} 數值,表 4 顯示將其與前述 M_{n1} 所需之拉 力鋼筋比 ρ_{i1} 相加所得之總拉力筋比,若所配 置的總拉力筋比等於或大於表 4 之值並配置 M_{n2} 中所需之壓力筋,則滿足 $\alpha \geq \alpha_{0max}$ (除 非 d-d'<0.8d,但一般 $d-d'\geq0.8d$), 如前所述,此代表選擇 $\varepsilon_s=0.005$ 可得最小鋼筋總用量,且可最有效率地使用 M_{n2} 之鋼筋,若不滿足 $\alpha \geq \alpha_{0max}$ 則仍意謂 $\varepsilon_s=0.005$ 可得最小鋼筋總用量。進一步比較表 4 與表 2 可發現, 使 用 $f_y=4200~{\rm kgf/cm^2}$, 搭 配 $f_c \leq 350~{\rm kgf/cm^2}$, 可滿足斷面最大拉力筋用量之限制。值得注意的是,前述同時滿足 $\alpha \geq \alpha_{0max}$ 以及最大拉力筋用量限制的材料組合,為目前設計實務之材料強度主流。

 $f_{\rm s}'({\rm kgf/cm}^2)$ $f_{v}(\text{kgf/cm}^2)$ 210 280 350 420 490 560 2800 0.025 0.025 0.025 0.025 0.025 0.025 4200 0.018 0.023 0.025 0.025 0.025 0.025

表 2 拉力筋最大鋼筋比限制

表 3 ε、=0.005 時平衡斷面壓力所需拉力筋鋼筋比

	$f_c'(\text{kgf/cm}^2)$								
$f_v(\text{kgf/cm}^2)$	210 280 350 420 490 560								
2800	0.020	0.027	0.032	0.036	0.039	0.041			
4200	0.014	0.018	0.021	0.024	0.026	0.028			

灰色代表滿足拉力筋最大鋼筋比限制 (表 2)

表 4 $\varepsilon_{\rm s}=0.005$ 時 $lpha=lpha_{0max}$ 所需配置之總拉力筋鋼筋比

	$f_c^{'}(\text{kgf/cm}^2)$									
$f_y(\text{kgf/cm}^2)$	210	280	350	420	490	560				
2800	0.028	0.038	0.046	0.053	0.059	0.064				
4200	0.015	0.019	0.023	0.027	0.030	0.033				

灰色代表滿足拉力筋最大鋼筋比限制(表2)

3.2 設計方法

針對表 3 可滿足規範最大拉力鋼筋比限制的 材料組合($f_c=210~{\rm kgf/cm^2}$,以及當 $f_y=4200~{\rm kgf/cm^2}$ 與 $f_c\leq 420~{\rm kgf/cm^2}$ 時),可採極限狀態下 $\varepsilon_s=0.005~$ 之設計,以得最小總鋼筋用量之結果。設計上可先採表 3 之數值配置 M_{n1} 之鋼筋,而後配置 M_{n2} 之鋼筋以滿足 M_u 之需求。至於其他材料組合,則需採極限狀態下 $\varepsilon_s>0.005$ 之設計,在此條件下,採用越小的 ε_s 可得越小之總鋼筋用量。針對表 4 所示可進一步滿足 $\alpha \geq \alpha_{0max}$ 要求之材料 組合($f_v=4200~{\rm kgf/cm^2}$,搭配

 $f_c \leq 350 \; \mathrm{kgf/cm^2}$),吾人應在規範限制之內 盡量配置 M_{n2} ,使 $\alpha \geq \alpha_{0max}$,可得鋼筋最小總面積之設計,並滿足 M_u 之需求,且可較有效率地使用 M_{n2} 之鋼筋。不論採用前述何種設計,皆需注意拉力筋用量不可超過規範上限,若超過則需放大斷面尺寸。當 M_u 之需求滿足後,若位於可能產生塑鉸位置,尚需滿足壓力鋼筋量不得小於拉力鋼筋量之半,若不滿足,則單獨增加壓力筋以滿足之,由於拉力筋不增加,故單獨增加壓力筋會使極限狀態下 ε_s 增大並些微增加斷面彎矩強度。又由圖 4×5 可觀察得知,若在圖中增加一條 A_{st} / 2 之線段,則此新增之線段與 A_{sc} 線段之差異,即是壓力筋需要再額外增加的用量。觀察圖形之趨勢變

化,可知在 $0.004 \le \varepsilon_s \le 0.005$ 區間內, A_{st} 用 量隨 ε_s 增加而顯著下降,因此採 $\varepsilon_s = 0.005$ 為設計,在補足額外所需的壓力鋼筋量後,仍為此 ε_s 區間內,最少總鋼筋用量。在 $\varepsilon_s > 0.005$ 之區域, A_{st} 用量隨 ε_s 增加而呈極微幅下降,故 $\varepsilon_s = 0.005$ 之設計,在補足額外壓力鋼筋量後,仍可近似於此區間最小總鋼筋用量。

4.結論

本研究探討雙筋矩形梁,在相同設計彎矩 M_u 與斷面尺寸下,鋼筋用量與極限狀態拉力筋應 變 ε ,之關係,獲致以下幾點主要結論。

- (1) 當 $0.004 \le \varepsilon_s \le 0.005$ 之間時,第一部分 彎矩 M_{n1} 之鋼筋用量,隨 ε_s 之增加而遞減;若 $\alpha \le \alpha_{0max}$,則第二部分彎矩 M_{n2} 之鋼筋用量,隨 ε_s 增加而遞增或先遞增而後遞減;若 $\alpha > \alpha_{0max}$,則 M_{n2} 之鋼筋用量 隨 ε_s 增加而遞減。總鋼筋用量恆隨 ε_s 增加而遞減。
- (2) 當 $\varepsilon_s \ge 0.005$ 時,隨著 ε_s 之增加, M_{n1} 與 M_{n2} 之鋼筋用量分別呈遞減與遞增之趨勢。總鋼筋用量隨 ε_s 之增加而遞增。拉力筋總用量隨 ε_s 之增加先遞減而後遞增;壓力筋用量則呈現恆遞增之趨勢。
- (3) 相較於 $0.004 \le \varepsilon_s < 0.005$ 時之設計, $\varepsilon_s = 0.005$ 之設計不但可有較低的總鋼筋用量,且有較佳的斷面變形能力,因此不建議採用 $0.004 \le \varepsilon_s < 0.005$ 之設計。 至於 $\varepsilon_s > 0.005$ 之設計雖可能需配置更多的鋼筋(主要為壓力筋),但可得更佳之斷面變形能力,其中取捨應由工程師視個

案需求認定。當 $f_c = 210 \text{ kgf/cm}^2$,以及當 $f_y = 4200 \text{ kgf/cm}^2$ 與 $f_c \le 420 \text{ kgf/cm}^2$ 時, $\varepsilon_s = 0.005$ 之設計可滿足耐震設計規範最大拉力筋比上限之規定。當 $f_y = 4200 \text{ kgf/cm}^2$, 搭配 $f_c \le 350 \text{ kgf/cm}^2$ 時,可進一步滿足 $\alpha > \alpha_{0max}$ 之要求,可更有效率的使用 M_{n2} 之鋼筋。

致謝

本研究承蒙國立台灣科技大學邁向頂尖大學 計畫提供研究經費,特此致謝。

參考文獻

- 1.內政部營建署,(2011)。「混凝土結構設計 規範」。
- 2.王麒驊·(1986)。「鋼筋混凝土學」,修訂版, 九樺出版社。
- 3. Wang, C. K., Salmon, C. G., and Pincheira J. A. (2007). *Reinforced concrete design*, 6th edition. John Wiley & Sons, Inc.
- 4. Wight, J. K., and MacGregor, J. G. (2008). Reinforced concrete: mechanics and design. 5th edition, Prentice Hall.
- 5. Whitney, C. (1937). "Design of reinforced concrete members under flexure or combined flexure and direct compression," ACI Journal Proceedings, Vol. 8, No.4, 483-498.

鋼筋混凝土梁撓曲極限狀態拉力筋應變與縱向鋼筋用量之關係

杜昱石1、歐昱辰2

摘要

本文依循混凝土結構設計規範之撓曲分析方法,探討鋼筋混凝土雙筋梁,在相同設計彎矩 與斷面尺寸下,撓曲極限狀態拉力筋應變與鋼筋用量之關係。研究結果闡釋拉力筋與壓力 筋用量,隨極限狀態拉力筋應變變化而改變之趨勢。根據所呈現之趨勢,本研究發現,當 極限狀態下,相較於介於 0.004 至小於 0.005 範圍之其他應變值,採用拉力筋應變為 0.005 之設計可得最小總鋼筋使用量,並得最佳斷面變形能力。若拉力筋應變大於 0.005,斷面 極限狀態變形能力隨著應變之增加而增加,但總鋼筋量也可能隨之增加。本研究並探討耐 震設計拉力筋用量上限條款與前述結論之關係,最終提出滿足規範之拉壓力筋配置辦法。

關鍵字:鋼筋混凝土梁、撓曲極限狀態、拉力筋應變、縱向鋼筋用量、耐震設計

¹國立台灣科技大學營建工程系大學部學生

²國立台灣科技大學營建工程系副教授

1. 前言

根據現行混凝土結構設計規範[1],為確保梁於撓曲極限極限狀態下有足夠韌性,因此規定極限狀態時最外受拉鋼筋之淨拉應變 ε_t 不得小於 0.004。又規範[1]規定,當 ε_t 大於 0.005時,屬拉力控制斷面,極限狀態時韌性較佳,因此採用較高之強度折減係數 (ϕ = 0.9)。當 ε_t 介於 0.005 至鋼筋降伏應變之間時,屬過渡斷面,極限狀態時韌性較差,因此 ϕ 值隨著 ε_t 之減少,由 0.005 線性遞減至由螺箍筋之 0.7 或其他情形之 0.65。

對一 ε_{ι} 介於 0.004 至 0.005 的梁而言,在撓曲極限狀態下, ε_{ι} 越小,梁斷面所能提供的計算彎矩強度 M_{n} 越大,因為混凝土壓力區較大,能提供較大的壓合力,因此容許較大之拉力區合力,導致較高之 M_{n} 。但 ε_{ι} 越小, ϕ 值越低,在須維持一定量之設計強度 M_{u} 下,可能會需要更高之 M_{n} 。又 ε_{ι} 低代表韌性低。另一方面來說, ε_{ι} 越大,梁斷面所能提供的 M_{n} 就越少,然而 ϕ 值較高,在需維持一定量之 M_{u} 下,所需的 M_{n} 可能較低,且韌性較高。因 M_{u} 和 M_{n} 之間,有一 ϕ 值之作用, ϕ 值與 ε_{ι} 成正相關,但 M_{n} 與 ε_{ι} 呈負相關,又 M_{n} 與材料強度及用量有關,在上述原理綜合作用下,想要直接看出在 M_{u} 以及斷面尺寸與材料強度固定下, ε_{ι} 與成本指標"鋼筋用量"之變化關係實屬不易。本研究依據規範之分析與設計方法,透過數學推導,以明確的原理原則來闡述 ε_{ι} 與鋼筋用量之變化關係。工程師透過此關係可瞭解 ε_{ι} 變化所導致的鋼筋用量的改變,並瞭解極限狀態下採用 ε_{ι} 小於 0.005 是否有機會可以減少鋼筋用量。

許多文獻[2-4]均指出,雙筋設計有諸多優點,例如壓力筋可減少梁因潛變與乾縮造成之長期撓度;可與拉力筋形成另一力學機制,產生更高的彎矩強度;壓力筋可支撐並錨定箍筋。就耐震設計而言,壓力筋的使用可增加斷面曲率韌性,因此規範[1]於耐震設計篇中,特別規定於梁柱交接面及其它可能產生塑鉸位置,壓力鋼筋量不得小於拉力鋼筋量之半,所以實務上梁多採雙筋配置,因此本研究針對雙筋梁進行探討。又實務上梁多採矩形設計,因此本研究之對象為矩形梁。

2. 固定設計彎矩強度下配筋量理論推導

2.1 推導過程中之基本假設

本研究對象為雙筋矩形梁,斷面基本尺寸之定義如圖 1 所示:其中 d' 為梁最外受壓纖維至受壓鋼筋形心之距離;有效梁深 d 為梁最外受壓纖維至受拉鋼筋形心之距離;b 為梁寬;h 為梁全深。為簡化推導,拉壓力筋採單排配置,此與目前實務傾向於採單排配置,使用較少數目之大號鋼筋之潮流符合。因此 ε_t 等於拉力形心位置應變 ε_s 。梁斷面達極限狀態時,混凝土壓應力之分佈假設可由 Whitney 等值應力塊[5]描述。鋼筋應力應變行為假設為理想彈塑性,意即鋼筋降伏後應力維持定值。

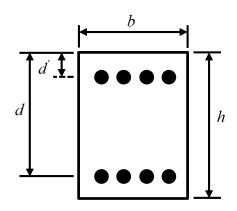


圖 1. 斷面基本尺寸定義

本研究將計算彎矩強度 M_n 分為 M_{n1} 與 M_{n2} 兩部份,其中 M_{n1} 為混凝土壓力區合力與相平衡之拉力筋合力所提供之彎矩強度(圖 2(a)); M_{n2} 為壓力筋與相平衡之拉力筋合力所提供之彎矩強度(圖 2(b))。 M_u 與 M_{n1} 以及 M_{n2} 之關係如式(1)所示。

$$M_{u} = \phi M_{n} = \phi (M_{n1} + M_{n2}) \tag{1}$$

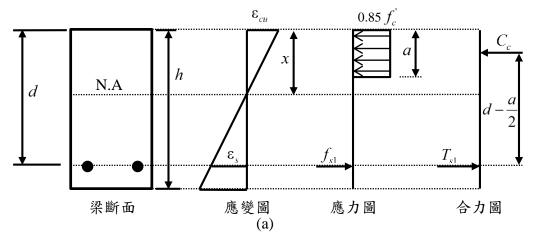
透過變形諧和,極限狀態下壓力筋之應變 ε_{sc} 可由式(2)求得。

$$\varepsilon_{sc} = 0.003 - \frac{0.003 + \varepsilon_s}{d} \times d' \tag{2}$$

本研究將壓力筋配置在斷面極限狀態下仍能降伏之處,故 $\varepsilon_{sc} \geq \varepsilon_{y}$,代入此條件,可得

$$\frac{d'}{d} \le \frac{0.003 - \varepsilon_y}{0.003 + \varepsilon_z} \tag{3}$$

若 d'/d 滿足式(3)之限制,則可確保極限狀態下壓力鋼筋降伏。



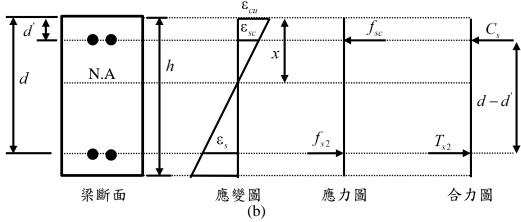


圖 2. (a) M_{n1} ; (b) M_{n2}

2.2 極限狀態下拉力筋形心位置應變介於 0.004 至 0.005

2.2.1 彎矩強度

透過變形諧和,極限狀態下中性軸深度 x 為

$$x = \frac{0.003d}{0.003 + \varepsilon_s} \tag{4}$$

Whitney 等值應力塊深度a 為

$$a = x\beta_1 = \frac{0.003d\beta_1}{0.003 + \varepsilon_s} \tag{5}$$

其中若 f_c ' \leq 280 kgf/cm², β_1 為 0.85,若 f_c ' > 280 kgf cm/²,每增加 70 kgf/cm², β_1 值 減少 0.05,但 $\beta_1 \geq$ 0.65。混凝土壓力區合力為

$$C_c = 0.85 f_c' ab = 0.85 f_c' \frac{0.003bd \beta_1}{0.003 + \varepsilon_1}$$
 (6)

對相對應拉力筋形心取彎矩,可得 M_{nl} 。

$$M_{n1} = C_c \left(d - \frac{a}{2} \right) = \frac{0.00255bd^2 \beta_1 f_c}{0.003 + \varepsilon_s} \left(1 - \frac{0.003 \beta_1}{2(0.003 + \varepsilon_s)} \right)$$
(7)

 M_{nl} 之計算如圖 2(a)所示。 M_{n2} 與 M_u 之關係如下式所示。

$$M_{n2} = \frac{M_u}{\phi} - M_{n1} \tag{8}$$

其中 ϕ 值與 ε_c (= ε_t) 之關係可由式(9)表達[1]。

$$\phi = \frac{0.9 - 0.65}{0.005 - \varepsilon_y} \left(\varepsilon_s - \varepsilon_y \right) + 0.65 = \frac{0.025\varepsilon_s - 0.9\varepsilon_y + \frac{13}{4000}}{0.005 - \varepsilon_y}$$

$$(9)$$

為後續推導需要以及表達設計彎矩強度具有一定的大小,吾人可將 M_u 表達成 $\varepsilon_s=0.005$ 之 M_{nl} 的倍數,如下式所示。

$$M_u = \alpha M_{n1} \quad (M_{n1} \ \ \text{$\not\sim$} \ \text{$\not\sim$$

將式(7)取 $\varepsilon_s = 0.005$ 代入式(10)可得

$$M_{u} = \alpha \frac{0.00255bd^{2} f_{c}'(0.016 - 0.003\beta_{1})}{0.008 \times 0.016}$$
(11)

將式(9)、式(7)與式(11)代入式(8)可得

$$M_{n2} = \alpha \frac{0.00255bd^{2} f_{c} ' (0.016 - 0.003\beta_{1})}{0.008 \times 0.016} \times \frac{0.005 - \varepsilon_{y}}{0.25\varepsilon_{s} - 0.9\varepsilon_{y} + \frac{13}{4000}} - \frac{0.00255bd^{2} f_{c} '}{0.003 + \varepsilon_{s}} \left(1 - \frac{0.003\beta_{1}}{2(0.003 + \varepsilon_{s})}\right)$$

$$(12)$$

2.2.2 配筋量

 M_{n1} 中平衡混凝土壓力所需之拉力筋用量 A_{sr1} ,為壓力區合力 C_c (式(6))除以拉力筋降伏強度 f_y 。

$$A_{st1} = \frac{C_c}{f_v} = \frac{0.00255bd \,\beta_1 f_c}{f_v \left(0.003 + \varepsilon_s\right)}$$
 (13)

 M_{n2} 可由第二部份彎矩之拉力筋合力,或壓力筋合力,乘上拉壓力筋合力之距離而求得。

$$M_{n2} = A_{st2} f_y (d - d') = A_{sc} (f_y - 0.85 f_c') (d - d')$$
(14)

其中 A_{sr2} 為 M_{n2} 之拉力筋面積; A_{sc} 為 M_{n2} 之壓力筋面積。上式移項整理可得 A_{sr2} 與 A_{sc} 。

$$A_{st2} = \frac{M_{n2}}{f_{v}(d-d')} \tag{15}$$

$$A_{sc} = \frac{M_{n2}}{(f_{v} - 0.85 f_{c}')(d - d')}$$
 (16)

2.2.3 配筋量與拉力筋形心位置應變之關係

透過 $A_{\rm vl}$ (式(13)) 對 ε 。之微分,可觀察 $A_{\rm vl}$ 與 ε 。之間的關係,如下式所示。

$$\frac{dA_{st1}}{d\varepsilon_s} = \frac{d}{d\varepsilon_s} \left(\frac{0.00255bd\beta_1 f_c}{f_y \left(0.003 + \varepsilon_s \right)} \right) = -\frac{0.00255bd\beta_1 f_c}{f_y \left(0.003 + \varepsilon_s \right)^2} \tag{17}$$

由上式可發現,在 ε_s 可能的範圍內, A_{srl} 對 ε_s 之微分皆為負值,即 ε_s 越大, A_{srl} 用量越小。物理意義的解釋為,當 ε_s 越大,混凝土壓力區深度越小,混凝土壓合力越小,因此用來與混凝土壓合力平衡的拉力筋用量隨之減少。接著,透過 $A_{sr2}+A_{sc}$ (式(15)+式(16)) 對 ε_s 之微分,可觀察 M_{n2} 鋼筋用量與 ε_s 之間的關係,如下式所示。

$$\frac{d\left(A_{st2} + A_{sc}\right)}{d\varepsilon_{s}} = \frac{d}{d\varepsilon_{s}} \left[\frac{M_{n2}}{f_{y}(d - d')} + \frac{M_{n2}}{(f_{y} - 0.85f_{c})(d - d')} \right]$$
(18)

上式提出常數項

$$\frac{d\left(A_{st2} + A_{sc}\right)}{d\varepsilon_{s}} = \left[\frac{1}{f_{y}\left(d - d'\right)} + \frac{1}{\left(f_{y} - 0.85f_{c}'\right)\left(d - d'\right)}\right] \frac{dM_{n2}}{d\varepsilon_{s}} \tag{19}$$

上式可知 $A_{st2}+A_{sc}$ 對 ε_s 之微分正比於 M_{n2} 對 ε_s 之微分。 M_{n2} 如式(12)所示,將其對 ε_s 微分,並加以整理可得。

$$\frac{dM_{n2}}{d\varepsilon_{s}} = 0.003bd^{2}\beta_{1}0.85f_{c}^{'} \left[-\frac{0.25\alpha(0.016 - 0.003\beta_{1})(0.005 - \varepsilon_{y})}{0.008 \times 0.016\left(0.25\varepsilon_{s} - 0.9\varepsilon_{y} + \frac{13}{4000}\right)^{2}} + \frac{0.003 + \varepsilon_{s} - 0.003\beta_{1}}{\left(0.003 + \varepsilon_{s}\right)^{3}} \right] (20)$$

觀察上式右側括弧內部分,可發現當 α 值越大,括弧之值越小,若想得負斜率之結果,則可令中括弧為零,求解 α_0 ,可得下式。

$$\alpha_0 = \frac{0.003 + \varepsilon_s - 0.003\beta_1}{\left(0.003 + \varepsilon_s\right)^3} \times \frac{0.008 \times 0.016 \left(0.25\varepsilon_s - 0.9\varepsilon_y + \frac{13}{4000}\right)^2}{0.25 \left(0.016 - 0.003\beta_1\right) \left(0.005 - \varepsilon_y\right)}$$
(21)

觀察式(21)可知,其中變數有 ε_s 、 β_l 、 ε_y ,若給定一組 β_l 與 ε_y 值,則 α_0 隨 ε_s 而變化。表 1 顯示在 $0.004 \le \varepsilon_s \le 0.005$ 區間內,在不同的 β_l 與 ε_y 值組合下, α_0 隨 ε_s 變化之最大值 α_{0max} 。

表 1. α_{0max}

	f_c (kgf/cm ²)	210	280	350	420	490	560	
	β_1	0.85	0.85	0.8	0.75	0.7	0.65	
$f_y(\text{kgf/cm}^2)$	\mathcal{E}_y	$lpha_{0max}$						
2800	0.001373	1.237	1.237	1.265	1.292	1.318	1.344	
4200	0.002059	0.966	0.966	0.986	1.007	1.028	1.048	

表 1.之意義在於,若 $\alpha > \alpha_{0max}$,意即 $M_u > \alpha_{0max} M_{n1} \left(\varepsilon_s = 0.005 \right)$,可得在 $0.004 \le \varepsilon_s \le 0.005$ 區間內,式(20)為負值,意即 M_{n2} 隨 ε_s 增加而遞減,而由式(19)可知,鋼筋用量 $A_{sr2} + A_{sc}$ 將隨 ε_s 增加而遞減。若 $\alpha \leq \alpha_{0max}$,則 $A_{st2} + A_{sc}$ 將隨 ε_s 增加而遞增或先遞增而後遞減。 至於總鋼筋用量 $A_{st1} + A_{st2} + A_{sc}$ 對 ε_s 之微分可將式(17)與式(19)相加而得

$$\frac{d\left(A_{st1} + A_{st2} + A_{sc1}\right)}{d\varepsilon_{s}} = -\frac{0.003bd\beta_{1}0.85f_{c}}{f_{y}\left(0.003 + \varepsilon_{s}\right)^{2}} + \left[\frac{1}{f_{y}\left(d - d'\right)} + \frac{1}{\left(f_{y} - 0.85f_{c}\right)\left(d - d'\right)}\right]\frac{dM_{n2}}{d\varepsilon_{s}}$$
(22)

其中 $dM_{n2}/d\varepsilon_s$ 結果如式(20)所示。在可能的材料強度、斷面設計參數以及 α 值之範圍內,式(22)皆為負值。此意謂總鋼筋用量隨著 ε_s 增加而遞減。

眾所周知,極限狀態下 ε_s 越高,代表斷面極限曲率越高,一般代表斷面擁有越佳的變形能力,有益於耐震性能。本節之推導顯示,在相同的設計彎矩強度 $M_{\rm u}$ 的條件下,於設計時採用 $\varepsilon_s=0.005$,比起其他 ε_s 值($0.004 \le \varepsilon_s < 0.005$),不但有較佳的耐震性能(較大之 ε_s 值),且使用較少的總鋼筋用量(較小之 $A_{\rm srl}+A_{\rm sr2}+A_{\rm sc}$ 值)。若進一步滿足 $\alpha>\alpha_{0max}$,則無論 $A_{\rm srl}$ 或 $A_{\rm sr2}+A_{\rm sc}$ 皆隨 ε_s 增加而呈遞減趨勢,代表更有效率地使用鋼筋材料。

2.3 極限狀態下拉力筋形心位置應變大於或等於 0.005

2.3.1 彎矩強度

當 $\varepsilon_s \ge 0.005$ 時, $\phi = 09$, M_{n1} 之表示式,如式(7)所示。將 $\phi = 0.9$ 代入式(8),再按式(10) 至式(12)之推導方式,可得 M_{n2} ,如下式所示。

$$M_{n2} = \alpha \frac{0.003bd^2\beta_1 0.85 f_c^{'}(0.016 - 0.003\beta_1)}{0.008 \times 0.016 \times 0.9} - \frac{0.003bd^2\beta_1 0.85 f_c^{'}}{0.003 + \varepsilon_s} \left(1 - \frac{0.003\beta_1}{2(0.003 + \varepsilon_s)}\right)$$
(23)

由於 M_{μ} 與 ϕ 為定值,式(1)對 ε 。微分可得下式。

$$\frac{dM_u}{d\varepsilon_s} = 0 = \phi \left(\frac{dM_{n1}}{d\varepsilon_s} + \frac{dM_{n2}}{d\varepsilon_s} \right)$$
 (24)

式(7)對 ε_s 微分可得 $\frac{dM_{nl}}{d\varepsilon_s}$,如下所示。

$$\frac{dM_{n1}}{d\varepsilon_s} = -\frac{0.003bd^2\beta_1 0.85 f_c}{\left(0.003 + \varepsilon_s\right)^2} \left(1 - \frac{0.003\beta_1}{0.003 + \varepsilon_s}\right)$$
(25)

代入式(24)可得 $\frac{dM_{n2}}{d\varepsilon_s}$

$$\frac{dM_{n2}}{d\varepsilon_s} = -\frac{dM_{n1}}{d\varepsilon_s} = \frac{0.00255bd^2\beta_1 f_c}{\left(0.003 + \varepsilon_s\right)^2} \left(1 - \frac{0.003\beta_1}{0.003 + \varepsilon_s}\right)$$
(26)

由式(25)與式(26),吾人可以清楚的觀察到,隨著 ε_s 的增加, M_{n1} 隨之遞減,但 M_{n2} 隨之遞減,但 M_{n2} 隨之遞增。 M_{n2} 遞增乃因 ϕ 值為常數(0.9),因此當 M_{n1} 越小, M_{n2} 則需提高,以維持相同的 M_u 。

2.3.2 配筋量

鋼筋用量 A_{st1} 可由式(13)計算而得。 A_{st2} 與 A_{sc} 則可分別由式(15)與式(16)求得,式中 M_{n2} 則由式(23)計算之。

2.3.3 配筋量與拉力形心位置應變之關係

 A_{sr1} 對 ε_s 之微分結果同式(17),因此 A_{sr1} 對 ε_s 之關係如前所述,即 ε_s 越大、 A_{sr1} 用量越小。 $A_{sr2}+A_{sc}$ 對 ε_s 之微分同式(19),其中 $dM_{n2}/d\varepsilon_s$ 結果如式(26)所示,由前述兩式可知,隨 ε_s 之增加, $A_{sr2}+A_{sc}$ 用量隨之提高。總鋼筋用量 $A_{sr1}+A_{sr2}+A_{sc}$ 對 ε_s 之微分如式(27)所示,該式於一般材料強度範圍內為正值,代表總鋼筋用量隨 ε_s 之增加而提高。

$$\frac{d\left(A_{st1} + A_{st2} + A_{sc}\right)}{d\varepsilon_{s}} = \frac{0.003bd\beta_{1}0.85f_{c}'}{\left(0.003 + \varepsilon_{s}\right)^{2}} \left[-\frac{1}{f_{y}} + \frac{d}{d-d'} \left(1 - \frac{0.003\beta_{1}}{0.003 + \varepsilon_{s}}\right) \left(\frac{1}{f_{y}} + \frac{1}{f_{y} - 0.85f_{c}'}\right) \right]$$
(27)

因此吾人可知,當 $\varepsilon_s \geq 0.005$,在不改變斷面設計彎矩強度 M_u 下,欲獲取極限狀態下越高的 ε_s ,第一部分彎矩 M_{n1} 的拉力筋用量 A_{sr1} 需降低;第二部分彎矩 M_{n2} 的拉壓力筋總量 $A_{sr2} + A_{sc}$ 需提高;總鋼筋用量則是呈現遞增之趨勢。前述推導顯示,欲獲取越佳的耐震性能(越高的 ε_s),需提高總鋼筋用量。

透過求取拉力筋總用量 $A_{sr1}+A_{sr2}$ 以及壓力筋用量 A_{sc} 對於對 ε_s 之微分,吾人可探討在不改變斷面設計彎矩強度 M_u 下,拉力筋與壓力筋用量與斷面變形能力之關係。首先求取拉力筋總用量 $A_{sr1}+A_{sr2}$ 對 ε_s 之微分,如下式所示。

$$\frac{d(A_{st1} + A_{st2})}{d\varepsilon_s} = -\frac{0.00255bd\beta_1 f_c'}{f_y(0.003 + \varepsilon_s)^2} \left[1 - \frac{d}{(d - d')} \left(1 - \frac{0.003\beta_1}{0.003 + \varepsilon_s} \right) \right]$$
(28)

觀察上式,可知當右側中括弧為正,則式(28)值為負,可得 $A_{sr1}+A_{sr2}$ 隨 ε_s 遞減之結果。 令上式右側中括弧內為0,可得上式正、負值之界線。

$$1 - \frac{d}{(d - d')} \left(1 - \frac{0.003 \beta_1}{0.003 + \varepsilon_s} \right) = 0$$
 (29)

定義(d-d')/d 為深度比(depth ratio),一般情況下此倍數範圍會介於 $0.8 \le 0.95$ 之間。透過式(29),可求得不同 β_1 值情況下, ε_s 與深度比之關係(圖 3),此關係代表某深度比之下,拉力筋總量呈遞減趨勢之極限 ε_s ;意即斷面深度比不變,當 ε_s 由 0.005 增大時,拉力筋總用量之趨勢為遞減,直到 ε_s 增加到圖 3 之曲線所對應的值,當 ε_s 超過圖 3 曲線所對應之值,則拉力筋總用量轉為遞增。

壓力筋用量 A_{sc} 對於對 ε_{sc} 之微分如下式所示。

$$\frac{dA_{sc}}{d\varepsilon_{s}} = \left[\frac{1}{\left(f_{y} - 0.85 f_{c}^{'} \right) \left(d - d^{'} \right)} \right] \frac{dM_{n2}}{d\varepsilon_{s}}$$
(30)

其中 $\frac{dM_{n2}}{d\varepsilon_s}$ 如式(26)所示。因式(26)恆為正值,所以壓力筋用量隨著 ε_s 之增加,恆為遞增。前述推導顯示,在相同的設計彎矩強度下,欲提高斷面的變形能力,則需提高壓力筋用量,至於拉力筋的用量則需先減少而後增加。

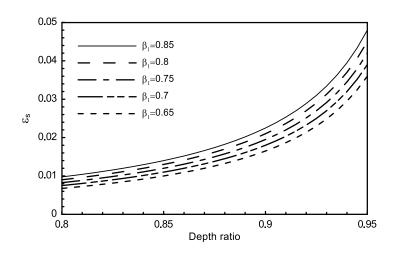


圖 $3.\varepsilon$ 。與深度比(depth ratio)之關係

根據前述推導之結果,圖 4 顯示某 $\alpha > \alpha_{0max}$ 之梁配筋量,與極限狀態 ϵ_s 於 $0.004 \le \epsilon_s \le 0.01$ 之關係,圖中 A_{st} 為總拉力筋用量($A_{st} = A_{st1} + A_{st2}$)。圖 4 清楚顯示,在設計彎矩 M_u 不變的情形下, $\epsilon_s = 0.005$ 可得最小總鋼筋用量($A_s = A_{st1} + A_{st2} + A_{sc}$)。又由圖 4 可知,在 $0.004 \le \epsilon_s \le 0.005$ 區間內, $A_{st2} + A_{sc}$ 亦呈現遞減之趨勢。圖 5 顯示某 $\alpha < \alpha_{0max}$ 之梁配筋量,與極限狀態 ϵ_s 於 $0.004 \le \epsilon_s \le 0.01$ 之關係。同樣地, $\epsilon_s = 0.005$ 可得最小總配筋量,但因 $\alpha < \alpha_{0max}$,因此在 $0.004 \le \epsilon_s \le 0.005$ 區間內, $A_{st2} + A_{sc}$ 呈現遞增之趨勢。

由於 ϵ_s 越大,代表越佳的耐震性能,且因 ϵ_s = 0.005 可得最小總鋼筋用量,因此不建議工程師採用極限狀態時 $0.004 \le \epsilon_s < 0.005$ 之設計,因為此範圍之 ϵ_s ,相較於 ϵ_s = 0.005 ,不但得使用較多的鋼筋,且得較差變形能力的斷面。當 $\epsilon_s > 0.005$ 時,越高的 ϵ_s (越佳的耐震性能),需要越高的總鋼筋用量方能達成。

本研究假設壓力筋於極限狀態降伏。壓力筋之降伏與否,只對 A_{sc} 之用量造成影響,在 $\epsilon_{s} \leq 0.005$ 之情況下,因為壓力筋不降伏而造成之壓力筋用量提升,在一般情況下並不會改變 A_{sc} 之用量與 ϵ_{s} 之關係,而在 $\epsilon_{s} \geq 0.005$ 之區域則會使原就遞增之結果更加顯著。

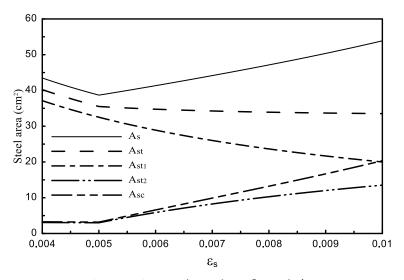


圖 4. 一梁 ε_s 與鋼筋用量之關係

 $(b=30 \text{ cm} \cdot d=60 \text{ cm} \cdot d' = 7 \text{ cm} \cdot f_c' = 280 \text{ kgf} / \text{cm}^2 \cdot f_y = 4200 \text{ kgf} / \text{cm}^2 \cdot M_u = 68 \text{ tf-m})$

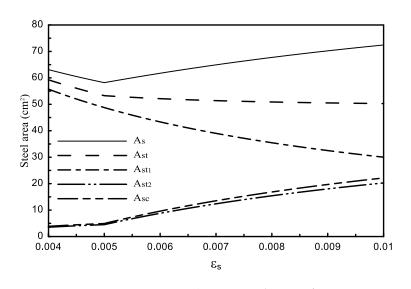


圖 5. 一梁 ε_s 與鋼筋用量之關係

 $(b=30 \text{ cm} \cdot d=60 \text{ cm} \cdot d' =7 \text{ cm} \cdot f_c' = 280 \text{ kgf} / \text{cm}^2 \cdot f_y = 2800 \text{ kgf} / \text{cm}^2 \cdot M_u = 68 \text{ tf-m})$

3. 耐震設計拉力筋上限與設計方法

3.1 拉力筋用量之上限

現行規範[1]之耐震設計之特別規定篇,針對梁之縱向鋼筋,規定拉力鋼筋比不得大於 $(f_c^{'}+100)/4f_y$,亦不得大於 0.025。前者為確保梁有足夠韌性,後者為確保拉力筋之使 用量不致於過多而影響施工性。表 2 列出不同 $f_c^{'}$ 與 f_y 組合下,符合前述規定之最大拉力筋之值。如 2.2.3 節所述,在設計彎矩 M_u 不變的情形下, $\varepsilon_s=0.005$ 可得最小總鋼筋

用量,若滿足 $\alpha>\alpha_{0max}$,則可以更有效率地使用 M_{n2} 之鋼筋 ($A_{st2}+A_{sc}$),因此本研究 針對 $\epsilon_s=0.005$,就前述拉力筋上限進行深入探討。

吾人可將式(13)除以有效斷面積bd,可得第一部分彎矩 M_{n1} 的拉力筋比 ρ_{n1} ,如下式所示。

$$\rho_{t1} = \frac{A_{st1}}{bd} = \frac{0.003\beta_1 0.85 f_c}{f_v (0.003 + \varepsilon_s)}$$
(31)

若將 $\varepsilon_s=0.005$ 代入式(31),可得以極限狀態下 $\varepsilon_s=0.005$ 作設計時, M_{n1} 所需之拉力鋼筋比 ρ_{r1} ,計算結果如表 3 所示。對照表 2 與表 3,吾人可發現,當 $f_c=210$ kgf / cm² ,以及當 $f_y=4200$ kgf / cm² 與 $f_c\leq 420$ kgf / cm² 時, M_{n1} 所需之 ρ_{r1} 小於耐震設計最大拉力筋比限制。意即針對前述材料組合,規範允許斷面極限狀態下 $\varepsilon_s=0.005$ 。至於其他材料組合,滿足 $\varepsilon_s=0.005$ 所需的拉力筋用量皆超過最大拉力筋限制,由表 3 可知,這些材料組合之拉力筋最大鋼筋比皆為 0.025,如前所述,最大鋼筋比 0.025 之規定是為確保鋼筋不致於過多而影響施工性,換言之,為滿足施工性需求,這些材料組合得使用 $\varepsilon_s>0.005$ 之設計。

 M_{n1} 配置完成後再進一步配置 M_{n2} ,令式(1)等於式(10),且代入 ϕ =0.9 ,解 M_{n2} 可得

$$M_{n2} = \frac{0.003d^2\beta_1 b 0.85 f_c^{'}}{0.003 + 0.005} \left(1 - \frac{0.003\beta_1}{2(0.003 + 0.005)} \right) \frac{\alpha - 0.9}{0.9}$$
(32)

代入式(14),可解得 M_{n2} 之拉力筋比 ρ_{t2} 為

$$\rho_{t2} = \frac{A_{st2}}{bd} = \frac{0.003d\beta_1 0.85 f_c^{'}}{0.003 + 0.005} \left(1 - \frac{0.003\beta_1}{2(0.003 + 0.005)} \right) \frac{\alpha - 0.9}{0.9} \frac{1}{f_v(d - d')}$$
(33)

假設 d-d'=0.8d ,令 $\alpha=\alpha_{0max}$ (表 1),則針對不同材料組合,可解得配置完 M_{n1} 後,進一步以配置 M_{n2} 為手段使斷面符合設計彎矩強度需求 $(\alpha=\alpha_{0max})$,所需之拉力鋼筋比 ρ_{n2} 數值,表 4 顯示將其與前述 M_{n1} 所需之拉力鋼筋比 ρ_{n1} 相加所得之總拉力筋比,若所

配置的總拉力筋比等於或大於表 4之值並配置 M_{n2} 中所需之壓力筋,則滿足 $\alpha \geq \alpha_{0max}$ (除 t = d - d' < 0.8d ,但一般 $t = d - d' \geq 0.8d$),如前所述,此代表選擇 t = 0.005 可得最小鋼筋總用量,且可最有效率地使用 t = 0.005 可得最小鋼筋總用量。進一步比較表 4 與表 2 可發現,使用 t = 0.005 可得最小鋼筋總用量。進一步比較表 4 與表 2 可發現,使用 t = 0.005 ,搭配 t = 0.005 ,可滿足斷面最大拉力筋用量之限制。值得注意的是,前述同時滿足 t = 0.005 以及最大拉力筋用量限制的材料組合,為目前設計實務之材料強度主流。

表 2. 拉力筋最大鋼筋比限制

	$f_c(\text{kgf/cm}^2)$								
$f_y(\text{kgf/cm}^2)$	210	210 280 350 420 490 560							
2800	0.025	0.025	0.025	0.025	0.025	0.025			
4200	0.018	0.023	0.025	0.025	0.025	0.025			

表 3. $\varepsilon_s = 0.005$ 時平衡斷面壓力所需拉力筋鋼筋比

	$f_c'(\text{kgf/cm}^2)$								
$f_y(\text{kgf/cm}^2)$	210	210 280 350 420 490 560							
2800	0.020	0.027	0.032	0.036	0.039	0.041			
4200	0.014	0.018	0.021	0.024	0.026	0.028			

灰色代表滿足拉力筋最大鋼筋比限制 (表2)

表 4 $\epsilon_{\rm s}=0.005$ 時 $lpha=lpha_{\rm 0max}$ 所需配置之總拉力筋鋼筋比

	$f_c'(\text{kgf/cm}^2)$								
$f_y(\text{kgf/cm}^2)$	210	210 280 350 420 490 560							
2800	0.028	0.038	0.046	0.053	0.059	0.064			
4200	0.015	0.019	0.023	0.027	0.030	0.033			

灰色代表滿足拉力筋最大鋼筋比限制 (表2)

3.2 設計方法

針對表 3 可滿足規範最大拉力鋼筋比限制的材料組合 ($f_c = 210 \, \mathrm{kgf/cm^2}$,以及當 $f_v = 4200 \text{ kgf/cm}^2$ 與 $f_c \le 420 \text{ kgf/cm}^2$ 時),可採極限狀態下 $\varepsilon_s = 0.005$ 之設計,以得最 小總鋼筋用量之結果。設計上可先採表 3 之數值配置 M_{n1} 之鋼筋,而後配置 M_{n2} 之鋼筋 以滿足 M_{μ} 之需求。至於其他材料組合,則需採極限狀態下 ε_{c} >0.005 之設計,在此條件 下,採用越小的 ϵ 。可得越小之總鋼筋用量。針對表4所示可進一步滿足 $lpha \geq lpha_{0max}$ 要求之 材料組合($f_v = 4200 \; \mathrm{kgf/cm^2}$,搭配 $f_c \leq 350 \; \mathrm{kgf/cm^2}$),吾人應在規範限制之內盡量配 $\mathbb{E} M_{n2}$,使 $\alpha \geq \alpha_{0max}$,可得鋼筋最小總面積之設計,並滿足 M_{u} 之需求,且可較有效率 地使用 M_n 。之鋼筋。不論採用前述何種設計,皆需注意拉力筋用量不可超過規範上限, 若超過則需放大斷面尺寸。當 M_{\parallel} 之需求滿足後,若位於可能產生塑鉸位置,尚需滿足壓 力鋼筋量不得小於拉力鋼筋量之半,若不滿足,則單獨增加壓力筋以滿足之,由於拉力筋 不增加,故單獨增加壓力筋會使極限狀態下 ε 。增大並些微增加斷面彎矩強度。又由圖4、 5 可觀察得知,若在圖中增加一條 $A_{cr}/2$ 之線段,則此新增之線段與 A_{cc} 線段之差異,即 是壓力筋需要再額外增加的用量。觀察圖形之趨勢變化,可知在 $0.004 \le \varepsilon_s \le 0.005$ 區間內, A_{cr} 用量隨 ε_{cr} 增加而顯著下降,因此採 ε_{cr} =0.005 為設計,在補足額外所需的壓力鋼筋量 後,仍為此 ε_{c} 區間內,最少總鋼筋用量。在 $\varepsilon_{c}>0.005$ 之區域, A_{cr} 用量隨 ε_{c} 增加而呈 極微幅下降,故 $\varepsilon_{\rm s}$ =0.005 之設計,在補足額外壓力鋼筋量後,仍可近似於此區間最小總 鋼筋用量。

4. 結論

本研究探討雙筋矩形梁,在相同設計彎矩 M_u 與斷面尺寸下,鋼筋用量與極限狀態拉力筋應變 ε 。之關係,獲致以下幾點主要結論。

(1) 當 $0.004 \le \varepsilon_s \le 0.005$ 之間時,第一部分彎矩 M_{n1} 之鋼筋用量,隨 ε_s 之增加而遞減; 若 $\alpha \le \alpha_{0max}$,則第二部分彎矩 M_{n2} 之鋼筋用量,隨 ε_s 增加而遞增或先遞增而後遞減; 若 $\alpha > \alpha_{0max}$,則 M_{n2} 之鋼筋用量隨 ε_s 增加而遞減。總鋼筋用量恆隨 ε_s 增加而遞減。

- (2) 當 $\varepsilon_s \geq 0.005$ 時,隨著 ε_s 之增加, M_{n1} 與 M_{n2} 之鋼筋用量分別呈遞減與遞增之趨勢。 總鋼筋用量隨 ε_s 之增加而遞增。拉力筋總用量隨 ε_s 之增加先遞減而後遞增;壓力筋 用量則呈現恆遞增之趨勢。
- (3) 相較於 $0.004 \le \varepsilon_s < 0.005$ 時之設計, $\varepsilon_s = 0.005$ 之設計不但可有較低的總鋼筋用量,且有較佳的斷面變形能力,因此不建議採用 $0.004 \le \varepsilon_s < 0.005$ 之設計。至於 $\varepsilon_s > 0.005$ 之設計雖可能需配置更多的鋼筋(主要為壓力筋),但可得更佳之斷面變形能力,其中取捨應由工程師視個案需求認定。當 $f_c = 210 \; \mathrm{kgf/cm^2}$,以及當 $f_y = 4200 \; \mathrm{kgf/cm^2}$ 與 $f_c \le 420 \; \mathrm{kgf/cm^2}$ 時, $\varepsilon_s = 0.005$ 之設計可満足耐震設計規範最大拉力筋比上限之規定。當 $f_y = 4200 \; \mathrm{kgf/cm^2}$ 時,可進一步満足 $\alpha > \alpha_{0max}$ 之要求,可更有效率的使用 M_{n2} 之鋼筋。

致謝

本研究承蒙國立台灣科技大學邁向頂尖大學計畫提供研究經費,特此致謝。

參考文獻

- [1] 內政部營建署,(2011)。「混凝土結構設計規範」。
- [2] 王麒驊,(1986)。「鋼筋混凝土學」,修訂版, 九樺出版社。
- [3] Wang, C. K., Salmon, C. G., and Pincheira J. A. (2007). *Reinforced concrete design*, 6th edition. John Wiley & Sons, Inc.
- [4] Wight, J. K., and MacGregor, J. G. (2008). *Reinforced concrete: mechanics and design*. 5th edition, Prentice Hall.
- [5] Whitney, C. (1937). "Design of reinforced concrete members under flexure or combined flexure and direct compression," *ACI Journal Proceedings*, Vol. 8, No.4, 483-498.